• Title/Summary/Keyword: AI 융합

Search Result 959, Processing Time 0.023 seconds

Data-Driven Technology Portfolio Analysis for Commercialization of Public R&D Outcomes: Case Study of Big Data and Artificial Intelligence Fields (공공연구성과 실용화를 위한 데이터 기반의 기술 포트폴리오 분석: 빅데이터 및 인공지능 분야를 중심으로)

  • Eunji Jeon;Chae Won Lee;Jea-Tek Ryu
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.71-84
    • /
    • 2021
  • Since small and medium-sized enterprises fell short of the securement of technological competitiveness in the field of big data and artificial intelligence (AI) field-core technologies of the Fourth Industrial Revolution, it is important to strengthen the competitiveness of the overall industry through technology commercialization. In this study, we aimed to propose a priority related to technology transfer and commercialization for practical use of public research results. We utilized public research performance information, improving missing values of 6T classification by deep learning model with an ensemble method. Then, we conducted topic modeling to derive the converging fields of big data and AI. We classified the technology fields into four different segments in the technology portfolio based on technology activity and technology efficiency, estimating the potential of technology commercialization for those fields. We proposed a priority of technology commercialization for 10 detailed technology fields that require long-term investment. Through systematic analysis, active utilization of technology, and efficient technology transfer and commercialization can be promoted.

A Study on the AI Analysis of Crop Area Data in Aquaponics (아쿠아포닉스 환경에서의 작물 면적 데이터 AI 분석 연구)

  • Eun-Young Choi;Hyoun-Sup Lee;Joo Hyoung Cha;Lim-Gun Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.861-866
    • /
    • 2023
  • Unlike conventional smart farms that require chemical fertilizers and large spaces, aquaponics farming, which utilizes the symbiotic relationship between aquatic organisms and crops to grow crops even in abnormal environments such as environmental pollution and climate change, is being actively researched. Different crops require different environments and nutrients for growth, so it is necessary to configure the ratio of aquatic organisms optimized for crop growth. This study proposes a method to measure the degree of growth based on area and volume using image processing techniques in an aquaponics environment. Tilapia, carp, catfish, and lettuce crops, which are aquatic organisms that produce organic matter through excrement, were tested in an aquaponics environment. Through 2D and 3D image analysis of lettuce and real-time data analysis, the growth degree was evaluated using the area and volume information of lettuce. The results of the experiment proved that it is possible to manage cultivation by utilizing the area and volume information of lettuce. It is expected that it will be possible to provide production prediction services to farmers by utilizing aquatic life and growth information. It will also be a starting point for solving problems in the changing agricultural environment.

Efficient QoS Policy Implementation Using DSCP Redefinition: Towards Network Load Balancing (DSCP 재정의를 통한 효율적인 QoS 정책 구현: 네트워크 부하 분산을 위해)

  • Hanwoo Lee;Suhwan Kim;Gunwoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.715-720
    • /
    • 2023
  • The military is driving innovative changes such as AI, cloud computing, and drone operation through the Fourth Industrial Revolution. It is expected that such changes will lead to a rapid increase in the demand for information exchange requirements, reaching all lower-ranking soldiers, as networking based on IoT occurs. The flow of such information must ensure efficient information distribution through various infrastructures such as ground networks, stationary satellites, and low-earth orbit small communication satellites, and the demand for information exchange that is distributed through them must be appropriately dispersed. In this study, we redefined the DSCP, which is closely related to QoS (Quality of Service) in information dissemination, into 11 categories and performed research to map each cluster group identified by cluster analysis to the defense "information exchange requirement list" on a one-to-one basis. The purpose of the research is to ensure efficient information dissemination within a multi-layer integrated network (ground network, stationary satellite network, low-earth orbit small communication satellite network) with limited bandwidth by re-establishing QoS policies that prioritize important information exchange requirements so that they are routed in priority. In this paper, we evaluated how well the information exchange requirement lists classified by cluster analysis were assigned to DSCP through M&S, and confirmed that reclassifying DSCP can lead to more efficient information distribution in a network environment with limited bandwidth.

The Perception Analysis of Autonomous Vehicles using Network Graph (네트워크 그래프를 활용한 자율주행차에 대한 인식 분석)

  • Hyo-gyeong Park;Yeon-hwi You;Sung-jung Yong;Seo-young Lee;Il-young Moon
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.97-105
    • /
    • 2023
  • Recently, with the development of artificial intelligence technology, many technologies for user convenience are being developed. Among them, interest in autonomous vehicles is increasing day by day. Currently, many automobile companies are aiming to commercialize autonomous vehicles. In order to lay the foundation for the government's new and reasonable policy establishment to support commercialization, we tried to analyze changes and perceptions of public opinion through news article data. Therefore, in this paper, 35,891 news article data mentioning terms similar to 'autonomous vehicles' over the past three years were collected and network analyzed. As a result of the analysis, major keywords such as 'autonomous driving', 'AI', 'future', 'Hyundai Motor', 'autonomous driving vehicle', 'automobile', 'industrial', and 'electric vehicle' were derived. In addition, the autonomous vehicle industry is developing into a faster and more diverse platform and service industry by converging with various industries such as semiconductor companies and big tech companies as well as automobile companies and is paying attention to the convergence of industries. To continuously confirm changes and perceptions in public opinion, it is necessary to analyze perceptions through continuous analysis of SNS data or technology trends.

Effect of Areal Mean Rainfall Estimation Technique and Rainfall-Runoff Models on Flood Simulation in Samcheok Osipcheon(Riv.) Basin (면적 강우량 산정 기법과 강우-유출 모형이 삼척오십천 유역의 홍수 모의에 미치는 영향)

  • Lee, Hyeonji;Shin, Youngsub;Kang, Dongho;Kim, Byungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.775-784
    • /
    • 2023
  • In terms of flood management, it is necessary to analyze quantitative rainfall and runoff from a spatial and temporal perspective and to analyze runoff for heavy rainfall events that are concentrated within a short period of time. The simulation and analysis results of rainfall-runoff models vary depending on the type and input data. In particular, rainfall data is an important factor, so calculating areal mean rainfall is very important. In this study, the areal mean rainfall of the Samcheok Osipcheon(Riv.) watersheds located in the mountainous terrain was calculated using the Arithmetic Mean Method, Thiessen's Weighting Method, and the Isohyetal Method, and the rainfall-runoff results were compared by applying the distributional model S-RAT and the lumped model HEC-HMS. The results of the temporal transferability study showed that the combination of the distributional model and the Isohyetal Method had the best statistical performance with MAE of 64.62 m3/s, RMSE of 82.47 m3/s, and R2 and NSE of 0.9383 and 0.8547, respectively. It is considered that this study was properly analyzed because the peak flood volume occurrence time of the observed and simulated flows is within 1 hour. Therefore, the results of this study can be used for frequency analysis in the future, which can be used to improve the accuracy of simulating peak flood volume and peak flood occurrence time in mountainous watersheds with steep slopes.

A Study on the Application of Task Offloading for Real-Time Object Detection in Resource-Constrained Devices (자원 제약적 기기에서 자율주행의 실시간 객체탐지를 위한 태스크 오프로딩 적용에 관한 연구)

  • Jang Shin Won;Yong-Geun Hong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.12
    • /
    • pp.363-370
    • /
    • 2023
  • Object detection technology that accurately recognizes the road and surrounding conditions is a key technology in the field of autonomous driving. In the field of autonomous driving, object detection technology requires real-time performance as well as accuracy of inference services. Task offloading technology should be utilized to apply object detection technology for accuracy and real-time on resource-constrained devices rather than high-performance machines. In this paper, experiments such as performance comparison of task offloading, performance comparison according to input image resolution, and performance comparison according to camera object resolution were conducted and the results were analyzed in relation to the application of task offloading for real-time object detection of autonomous driving in resource-constrained devices. In this experiment, the low-resolution image could derive performance improvement through the application of the task offloading structure, which met the real-time requirements of autonomous driving. The high-resolution image did not meet the real-time requirements for autonomous driving due to the increase in communication time, although there was an improvement in performance. Through these experiments, it was confirmed that object recognition in autonomous driving affects various conditions such as input images and communication environments along with the object recognition model used.

Analysis and Study for Appropriate Deep Neural Network Structures and Self-Supervised Learning-based Brain Signal Data Representation Methods (딥 뉴럴 네트워크의 적절한 구조 및 자가-지도 학습 방법에 따른 뇌신호 데이터 표현 기술 분석 및 고찰)

  • Won-Jun Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.137-142
    • /
    • 2024
  • Recently, deep learning technology has become those methods as de facto standards in the area of medical data representation. But, deep learning inherently requires a large amount of training data, which poses a challenge for its direct application in the medical field where acquiring large-scale data is not straightforward. Additionally, brain signal modalities also suffer from these problems owing to the high variability. Research has focused on designing deep neural network structures capable of effectively extracting spectro-spatio-temporal characteristics of brain signals, or employing self-supervised learning methods to pre-learn the neurophysiological features of brain signals. This paper analyzes methodologies used to handle small-scale data in emerging fields such as brain-computer interfaces and brain signal-based state prediction, presenting future directions for these technologies. At first, this paper examines deep neural network structures for representing brain signals, then analyzes self-supervised learning methodologies aimed at efficiently learning the characteristics of brain signals. Finally, the paper discusses key insights and future directions for deep learning-based brain signal analysis.

Consideration of Technical Direction of Software Defined Vehicle Integration with C-ITS based on the analysis of In-Vehicle Infotainments (차량 인포테인먼트 아키텍처 분석 기반 향후 협력 지능형 교통 체계와 SDV 연동 방향성에 대한 고찰)

  • Joon-Young Kim;Young-Eun Kim;Won-Jun Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.149-156
    • /
    • 2024
  • The increased intelligence and speed of vehicle infotainment, whose main purpose was emergency and external communication, is showing the potential for application to various services such as navigation and autonomous driving. In particular, functionality for linking external devices and infrastructure is being strengthened due to advances in communication and networks. Under this trend, it is necessary to consider the direction of linkage with the cooperative intelligent transportation system (C-ITS) for advanced vehicle services and driving. In addition, in the case of automobiles, future vehicle development concepts are being established based on the concept of software-defined vehicles (SDVs) in line with the trend of electrification beyond telematics and infotainment advancements, and such SDV linkage must be considered at the same time. In this paper, we consider the future direction of ITS and SDV linkage based on analysis of vehicle infotainment structure. First, for this purpose, we analyze the existing vehicle infotainment structure and architecture, and also present the structure of the SDV linked to it. Based on this, analysis and implications are drawn on the possibility of applying and linking standard-based C-ITS services with SDV devices.

A Basic Study on User Experience Evaluation Based on User Experience Hierarchy Using ChatGPT 4.0 (챗지피티 4.0을 활용한 사용자 경험 계층 기반 사용자 경험 평가에 관한 기초적 연구)

  • Soomin Han;Jae Wan Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.493-498
    • /
    • 2024
  • With the rapid advancement of generative artificial intelligence technology, there is growing interest in how to utilize it in practical applications. Additionally, the importance of prompt engineering to generate results that meet user demands is being newly highlighted. Exploring the new possibilities of generative AI can hold significant value. This study aims to utilize ChatGPT 4.0, a leading generative AI, to propose an effective method for evaluating user experience through the analysis of online customer review data. The user experience evaluation method was based on the six-layer elements of user experience: 'functionality', 'reliability', 'usability', 'convenience', 'emotion', and 'significance'. For this study, a literature review was conducted to enhance the understanding of prompt engineering and to grasp the clear concept of the user experience hierarchy. Based on this, prompts were crafted, and experiments for the user experience evaluation method were carried out using the analysis of collected online customer review data. In this study, we reveal that when provided with accurate definitions and descriptions of the classification processes for user experience factors, ChatGPT demonstrated excellent performance in evaluating user experience. However, it was also found that due to time constraints, there were limitations in analyzing large volumes of data. By introducing and proposing a method to utilize ChatGPT 4.0 for user experience evaluation, we expect to contribute to the advancement of the UX field.

Diffusion Characteristics Based on the Gas Leakage Direction and Air Change per Hour in a Enclosed Space on Board a Ship (밀폐된 선내 공간에서 가스 누출방향과 환기횟수에 따른 확산특성)

  • Seong Min Lee;Ha Young Kim;Byeol Kim;Kwang Il Hwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Hydrogen is being touted as one of the energy sources to combat the climate change crisis. However, hydrogen can leak into enclosed spaces, rise to the ceiling, accumulate, and cause fires and explosions if it encounters an ignition source. In particular, ships that transport hydrogen or use it as a fuel comprise multiple enclosed spaces. Therefore, the dif usion characteristics within these spaces must be understood to ensure the safe use of hydrogen. The purpose of this study is to experimentally determine the diffusion characteristics of helium, which has similar properties to hydrogen, in a closed space on board a ship, and to determine the change in the oxygen concentration along the leakage direction as the air change per hour(ACH) increases to 25, 30, 35, 40, and 45 through CFD simulation. The study, results revealed that the oxygen concentration reduction rate was 2% for leakage in the -z direction and 1% for leakage in the +x and +z directions, and the ventilation time was 15 min 30 s for leakage in the -z direction, 7 min for leakage in the +x direction, and 9 min for leakage in the +z direction, showing that differences existed in the oxygen concentration and ventilation time depending on the leakage direction. In addition, no significant difference was observed in the rate of oxygen concentration reduction and ventilation time in all leakage directions from the ACH of 35 and above in the experimental space. Therefore, because the oxygen concentration and ventilation time were not improved by increasing the ACH, 35 was noted as the optimal ACH in this experimental environment.