DOI QR코드

DOI QR Code

Diffusion Characteristics Based on the Gas Leakage Direction and Air Change per Hour in a Enclosed Space on Board a Ship

밀폐된 선내 공간에서 가스 누출방향과 환기횟수에 따른 확산특성

  • Seong Min Lee (Department of Refrigeration and Air Conditioning Engineering, National Korea Maritime & Ocean University) ;
  • Ha Young Kim (Department of Refrigeration and Air Conditioning Engineering, National Korea Maritime & Ocean University) ;
  • Byeol Kim (Interdisciplinary Major of Maritime AI Convergence, National Korea Maritime & Ocean University) ;
  • Kwang Il Hwang (Division of Mechanical Engineering, National Korea Maritime & Ocean University)
  • 이성민 (국립한국해양대학교 냉동공조공학과) ;
  • 김하영 (국립한국해양대학교 냉동공조공학과) ;
  • 김별 (국립한국해양대학교 해양AI융합전공) ;
  • 황광일 (국립한국해양대학교 기계공학부)
  • Received : 2024.03.21
  • Accepted : 2024.04.26
  • Published : 2024.04.30

Abstract

Hydrogen is being touted as one of the energy sources to combat the climate change crisis. However, hydrogen can leak into enclosed spaces, rise to the ceiling, accumulate, and cause fires and explosions if it encounters an ignition source. In particular, ships that transport hydrogen or use it as a fuel comprise multiple enclosed spaces. Therefore, the dif usion characteristics within these spaces must be understood to ensure the safe use of hydrogen. The purpose of this study is to experimentally determine the diffusion characteristics of helium, which has similar properties to hydrogen, in a closed space on board a ship, and to determine the change in the oxygen concentration along the leakage direction as the air change per hour(ACH) increases to 25, 30, 35, 40, and 45 through CFD simulation. The study, results revealed that the oxygen concentration reduction rate was 2% for leakage in the -z direction and 1% for leakage in the +x and +z directions, and the ventilation time was 15 min 30 s for leakage in the -z direction, 7 min for leakage in the +x direction, and 9 min for leakage in the +z direction, showing that differences existed in the oxygen concentration and ventilation time depending on the leakage direction. In addition, no significant difference was observed in the rate of oxygen concentration reduction and ventilation time in all leakage directions from the ACH of 35 and above in the experimental space. Therefore, because the oxygen concentration and ventilation time were not improved by increasing the ACH, 35 was noted as the optimal ACH in this experimental environment.

수소는 기후변화 위기에 대응하기 위한 에너지원 중 하나로 주목받고 있다. 그러나, 수소는 밀폐된 공간에 누출되면 천장으로 상승하여 축적되고, 점화원과 만나면 화재나 폭발의 위험이 있다. 특히, 수소를 운송하거나 연료로 사용하는 선박은 여러 밀폐된 공간으로 구성되어 있기 때문에 수소를 안전하게 사용하기 위해서는 공간 내에서의 확산 특성을 파악해야 한다. 본 연구는 선박 내 밀폐된 공간에서 수소와 유사한 특성을 가진 헬륨의 누출방향에 따른 확산 특성을 실험적으로 파악하고, CFD 시뮬레이션을 통해 환기횟수가 25, 30, 35, 40, 45ACH로 증가함에 따라 누출방향에 따른 산소농도 변화를 파악하는 것이 목적이다. 연구 결과, 산소농도감소율은 -z 방향의 누출이 2%, +x와 +z 방향의 누출이 1%였으며, 환기소요시간은 -z 방향 누출이 15분 30초, +x 방향 누출이 7분, +z 방향 누출이 9분으로 누출방향에 따라 산소농도와 환기소요시간에 차이가 있음을 보여준다. 또한, 실험공간에서 환기횟수 35ACH 이상부터는 모든 누출 방향에서의 산소농도감소율과 환기소요시간에 유의미한 차이가 없었다. 따라서, 환기횟수를 증가하여도 산소농도와 환기소요시간이 개선되지 않았기 때문에 본 실험환경에서의 적정 환기횟수는 35ACH임을 알 수 있었다.

Keywords

References

  1. Abbas, M. A. H., S. Kheradmand, and H. Sadoughipour (2020), Numerical study of the effect of hydrogen leakage position and direction on hydrogen distribution in a closed enclosure. International Journal of Hydrogen Energy, Vol. 45, No. 43, pp. 23872-23881. https://doi.org/10.1016/j.ijhydene.2020.06.202
  2. Anderson, M. J.(2017), DOE simplified: practical tools for effective experimentation, CRC press.
  3. Bernard, M. G. and H. A. Deborah(2017), Comparison of helium and hydrogen releases in 1 m 3 and 2 m 3 two vents enclosures: Concentration measurements at different flow rates and for two diameters of injection nozzle, International journal of hydrogen energy, Vol. 42, No. 11, pp. 7542-7550. https://doi.org/10.1016/j.ijhydene.2016.05.217
  4. Choe, T. H., U. S. Sim, B. U. Sin, J. H. Im, Y. C. Ju, J. P. Im, C. H. Gu, Y. J. Jeong, Y. R. Choe, S. Y. Park, and D. H. Seo(2022), Hydrogen Safety Manual for Workers.
  5. Freeman, L. C.(1966), Kish: SURVEY SAMPLING (Book Review). Social Forces, Vol. 45, No. 1, p. 132.
  6. Gitushi, K. M., M. L. Blaylock, and L. E. Klebanoff(2022), Hydrogen gas dispersion studies for hydrogen fuel cell vessels II: Fuel cell room releases and the influence of ventilation, International Journal of Hydrogen Energy, Vol. 47, No. 50, pp. 21492-21505. https://doi.org/10.1016/j.ijhydene.2022.04.263
  7. He, J., E. Kokgil, L. L. Wang, and H. D. Ng(2016), Assessment of similarity relations using helium for prediction of hydrogen dispersion and safety in an enclosure, International Journal of Hydrogen Energy, Vol. 41, No. 34, pp. 15388-15398. https://doi.org/10.1016/j.ijhydene.2016.07.033
  8. Hwang, D. J., B. R. Kil, S. G. Park, and M. H. Kim(2017), Numerical study on the location of air intake and exhaust outlet for effective ventilation in case of hydrogen gas leakage in hydrogen tank storeroom, Journal of Advanced Marine Engineering and Technology, Vol. 41, No. 7, pp. 619-625.
  9. Ibrahim, R. A. and I. M. Grace(2010). Modeling of ship roll dynamics and its coupling with heave and pitch. Mathematical Problems in Engineering.
  10. Kikukawa, S.(2008), Consequence analysis and safety verification of hydrogen fueling stations using CFD simulation. International Journal of Hydrogen Energy, Vol. 33, No. 4, pp. 1425-1434. https://doi.org/10.1016/j.ijhydene.2007.11.027
  11. Korean Register(2023), Low Flash Point Fuel Ships Rules.
  12. Lee, J. I., K. Jin, H. C. Jeong, S. J. Yu, S. J. Jeong, C. H. Lee, U. G. Lee, Y. C. Jang, M. H. Park, G. O. Kim, J. S. Park, and J. W. Hyeon(2022), Educational Reference Book for Carbon Neutrality in 2050.
  13. Ministry of Trade, Industry and Energy(MOTIE)(2023), Hydrogen Safety Management Roadmap 2.0, Sejong Special Self-Governing City.
  14. Moon, I. and E. J. Kim(2019), Introduction to Hydrogen Safety, Cheongsong Media.
  15. Sun, H., P. Yan, and Y. Xu(2020), Numerical simulation on hydrogen combustion and flow characteristics of a jet-stabilized combustor. International Journal of Hydrogen Energy, Vol. 45, No. 22, pp. 12604-12615. https://doi.org/10.1016/j.ijhydene.2020.02.151
  16. Xin, J., Q. Duan, K. Jin, and J. Sun(2023), A reduced -scale experimental study of dispersion characteristics of hydrogen leakage in an underground parking garage, International Journal of Hydrogen Energy, Vol. 48, No. 44, pp. 16936-16948. https://doi.org/10.1016/j.ijhydene.2023.01.170
  17. Zhang, X., X. Wang, Q. Wang, P. Yu, Y. Miao, X. Hou, Z. Zhao, and Y. Li(2023), The effect of hydrogen leakage positions and leak flow rate on its dispersion in a small fuel cell bus, Fuel Cells, Vol. 23, No. 1, pp. 88-96. https://doi.org/10.1002/fuce.202200087
  18. Zhao, M., T. Huang, C. Liu, M. Chen, S. Ji, D. M. Christopher, and X. Li(2021), Leak localization using distributed sensors and machine learning for hydrogen releases from a fuel cell vehicle in a parking garage, International Journal of Hydrogen Energy, Vol. 46, No. 1, pp. 1420-1433. https://doi.org/10.1016/j.ijhydene.2020.09.218