• Title/Summary/Keyword: AI 개발

Search Result 1,369, Processing Time 0.025 seconds

A Study on the Standard AI Developer Job Training Track Based on Industry Demand

  • Lee, Won Joo;Kim, Doohyun;Kim, Sang Il;Kim, Han Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.251-258
    • /
    • 2022
  • In this paper, we propose a standard AI developer job training track based on industry needs. The characteristic of this curriculum is that it can minimize the mismatch of AI developer job competency between industries and universities. To develop an AI developer job training track, a survey will be conducted for AI developers working in industrial fields. In this survey, among the five NCS-based AI developer jobs, job analysis is conducted by deriving AI developer jobs with high demand for manpower in industrial fields. In job analysis, the core competency unit elements of the job are selected, and knowledge, skills, tools, etc. necessary to perform the core competency unit elements are derived. In addition, a standard AI developer job curriculum is developed by deriving core subjects and road-map that can educate knowledge, skills, tools, etc. In addition, we present an efficient AI developer job training method using the standard AI developer job training course proposed in this paper.

The Study on Test Standard for Measuring AI Literacy

  • Mi-Young Ryu;Seon-Kwan Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.39-46
    • /
    • 2023
  • The purpose of this study is to design and develop the test standard to measure AI literacy abilities. First, we selected key areas of AI literacy through the related studies and expert FGI and designed detailed standard. The area of the test standard is divided into three categories: AI concept, practice, and impact. In order to confirm the validity of the test standard, we conducted twice expert validity tests and then modified and supplemented the test index. To confirm the validity of the test standard, we conducted an expert validity test twice and then modified and supplemented the test standard. The final AI literacy test standard consisted of a total of 30 questions. The AI literacy test standard developed in this study can be an important tool for developing self-checklists or AI competency test questions for measuring AI literacy ability.

Development of Artificial Intelligence Education System for K-12 Based on 4P (4P기반의 K-12 대상 인공지능 교육을 위한 교육체계 개발)

  • Ryu, Hyein;Cho, Jungwon
    • Journal of Digital Convergence
    • /
    • v.19 no.1
    • /
    • pp.141-149
    • /
    • 2021
  • Due to the rapid rise of artificial intelligence technology around the world, SW education conducted in elementary and secondary schools is expanding including AI education. Therefore, this study aims to present an AI education system based on 4P(Play, Problem Solving, Product Making, Project) that can be applied from kindergarten to high school. The AI education system presented in this study is designed to be applied in 4P-based Play, Problem Solving, Product Making, and Project 4 stages so that it can be applied by school age and step by step. The level was presented by dividing it into two areas: AI literacy and AI development. In order to verify the validity of the developed AI education system, the Delphi method was applied to 15 experts who had experience in SW education or AI education. The AI education system derived as a result of the verification will be able to contribute to the development of a content system for AI education at each school level in the future.

The Requirements Analysis of Data Management and Model Reliability for Smart Factory Predictive Maintenance AI Model Development (스마트팩토리 예지보전 AI 모델 개발을 위한 데이터 관리 및 모델 신뢰성 요구사항 분석)

  • Jinse Kim;Jung-Won Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.644-646
    • /
    • 2023
  • 스마트팩토리는 협동 로봇과 같은 프로그래머블한 설비의 유기적인 협업을 통해 최적화된 공정을 수행한다. 따라서 수집되는 센서 데이터의 특징과 환경 조건의 복잡도가 높아, 예지보전을 위한 AI 소프트웨어의 개발 시 요구사항 기반의 체계적인 개발 및 검증이 필수적이다. 본 논문에서는 AI 소프트웨어의 요구사항을 사용자와 시스템 관점에서 정의하고, AI 모델 개발 프로세스와 스마트팩토리 예지보전 측면에서 분석한다. 도출된 요구사항을 CNN 기반의 협동 로봇 기어 마모 예측 모델의 개발에 적용하여 데이터 관리와 모델 신뢰성 관점의 요구사항을 분석 및 검증하였다.

Proposal of methodology for AI-based new product development: ambidexterity approach (인공지능 기반 신제품 개발 방법론 제안: 양손잡이(Ambidexterity) 접근)

  • Chung, Doohee
    • Journal of Technology Innovation
    • /
    • v.29 no.4
    • /
    • pp.161-196
    • /
    • 2021
  • This study presents a new methodology for developing AI-based products. It identifies the distinctive attributes of AI innovation that are different from existing methods, and presents a product design process and methodology reflecting these attributes. This study emphasizes that AI product development should be oriented toward an ambidexterity approach. This study proposes a design process and specific development method for AI-based products that including steps such as technology push oriented idea generation with morphological approach, market pull oriented consumer requirements analysis, product design refinement, etc. In order to verify the practical applicability of this methodology, an AI-based car infotainment system development strategy is derived as a case study. 13 innovative ideas were generated by the morphological approach and expert review based on technological possibility, and a total of 6 quality requirements were derived as new product development strategies through the analysis of consumer requirements by combining Kano and TOPSIS. The methodology proposed in this research paper can be usefully utilized for companies to pioneer new markets through AI-based products or to expand the market by upgrading existing products or services.

Integrated Arts Education Program with AI Literacy

  • Jihye Kim;SunKwan Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.281-288
    • /
    • 2023
  • This study aimed to develop an integrated arts education program for improving AI literacy among elementary school students. First, we developed two thematic programs that are research on the goals of the art, music, physical curriculum in the 2022 revised elementary school curriculum, and a matrix of goals and elements of integrated art education. The developed program was revised and supplemented through the first expert validity test, and the second revision was made based on the results of students' AI literacy pre/post-test and satisfaction survey with the program. Finally, the final program was developed through the third expert validity test. We hope that the developed program will be used as a convergence education program to cultivate AI literacy in elementary school students.

Present Status and Future of AI-based Drug Discovery (신약개발에서의 AI 기술 활용 현황과 미래)

  • Jung, Myunghee;Kwon, Wonhyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1797-1808
    • /
    • 2021
  • Artificial intelligence is considered one of the core technologies leading the 4th industrial revolution. It is adopted in various fields bringing about a huge paradigm shift throughout our society. The field of biotechnology is no exception. It is undergoing innovative development by converging with other disciplines such as computers, electricity, electronics, and so on. In drug discovery and development, big data-based AI technology has a great potential of improving the efficiency and quality of drug development, rapidly advancing to overcome the limitations in the existing drug development process. AI technology is to be specialized and developed for the purpose including clinical efficacy and safety-related end points based on the multidisciplinary knowledge such as biology, chemistry, toxicology, pharmacokinetics, etc. In this paper, we review the current status of AI technology applied for drug discovery and consider its limitations and future direction.

Development of Artificial Intelligence Education Program for Elementary Education Using Advance Organizer (선행조직자를 활용한 초등 인공지능 교육 프로그램 개발)

  • Lee, Dagyeom;Kim, Seong-won;Lee, Youngjun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.219-221
    • /
    • 2022
  • 초등학교 인공지능(Artificial Intelligence, AI) 교육은 학교급별 특성과 수준을 고려하여 놀이 및 체험 활동 중심으로 계획되고 있다. 그러나 교육 현장의 수요 및 AI 리터러시 연구에서 AI 개념의 지도 필요성이 제시되고 있다. 초등학생에게 어렵고 생소한 AI 개념을 교육하기 위해 학습자의 발달 특성을 고려한 교수학습 전략이 필요하다. 선행조직자는 개념 지도 시 학습자의 인지적 부하를 줄일 수 있는 효과적인 교수학습 전략 중 하나로 이미 초등학생을 위한 인공지능 교재에 널리 사용되고 있다. 그러나 교재 분석 결과 선행조직자는 학생별 경험과 양육환경의 차이로 인해 선행조직자로서 기능하지 못할 가능성이 있다. 이를 해결하기 위해 본 연구는 초등학교에 널리 활용될 수 있는 선행조직자를 초등 교육과정에서 추출하여 AI 교육 프로그램을 개발하였다. 본 프로그램은 초등학교 5~6학년 AI 교육 내용 기준에서 AI 개념 요소를 추출하여 초등학교 1~4학년 교과 교육과정에서 선행조직자를 선정하였고 4차시의 교육 프로그램을 개발하였다. 본 연구를 통해 개발된 프로그램이 초등학생의 효과적인 AI 개념을 학습과 AI 리터러시 향상에 도움이 될 것으로 기대된다.

  • PDF

Analysis of the Effect of the AI Utilization Competency Enhancement Education Program on AI Understanding, AI Efficacy, and AI Utilization Perception Improvement among Pre-service Secondary Science Teachers (AI 활용 역량 강화 교육 프로그램이 중등 과학 예비교사들의 AI 이해, AI 효능감 및 AI 활용에 대한 인식 개선에 미친 효과 분석)

  • Jihyun Yoon;So-Rim Her;Seong-Joo Kang
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • In this study, in order to strengthen the AI utilization competency of pre-service secondary science teachers, a project activity in which pre-service teachers directly create an 'AI-based molecular structure customized learning support tool' by using Google's teachable machine was developed and applied. To this end, the program developed for 26 third-grade pre-service teachers enrolled in the Department of Chemistry Education at H University in Chungcheongbuk-do was applied for 14 sessions during extracurricular activities. Then, the perceptions of 'understanding how AI works', 'efficacy of using AI in science classes', and 'plans to utilize AI in science classes' were investigated. As a result of the study, it was found that the program developed in this study was effective in helping pre-service teachers understand the operating principle of AI technology for machine learning at a basic level and learning how to use it. In addition, the program developed in this study was found to be effective in increasing the efficacy of pre-service teachers for the use of AI in science classes. And it was also found that pre-service teachers recognized the aspect of using AI technology as a new teaching·learning strategy and tool that can help students understand science concepts. Accordingly, it was found that the program developed in this study had a positive impact on pre-service teachers' AI utilization competency reinforcement and perception improvement at the basic level. Implications of this were discussed.

Development of Steps AI Digital Competency Framework for Teachers (교원을 위한 단계별 AI디지털 역량 프레임워크 개발)

  • Soo-Bum Shin
    • Journal of Practical Engineering Education
    • /
    • v.15 no.3
    • /
    • pp.597-603
    • /
    • 2023
  • This study evaluates the AI digital competencies of teachers and presents a step-by-step framework for teacher's AI digital competencies that can be utilized in training. To do this, AI digital competencies were analyzed from the perspective of utilization and disposition, linked with the Technological Pedagogical Content Knowledge (TPACK) perspective. Then, as a precedent for step-by-step teacher AI digital competencies, the 3-step competency of the British Education and Training Foundation and the UNESCO ICT Teacher Competency Framework were presented. In this study, teacher's AI digital competencies were divided into three stages: entry, adaptation, and leadership, considering precedent research and domestic conditions. The initial entry stage passed the validity test in the second round of the Delphi survey, and the other two stages passed in the first round. The final entry stage is described as a stage where teachers understand AI digital but have difficulty implementing it, the adaptation stage is a level applied to standard curricula, and the leadership stage is a level where AI digital is applied in advanced courses and teachers serve as models for others. Through the overall AI digital competencies presented in this study, detailed competency development is possible, and it can be used as a reference material for developing evaluation items.