• Title/Summary/Keyword: AI (Artificial Intelligence)

Search Result 1,960, Processing Time 0.03 seconds

Smart Livestock Research and Technology Trend Analysis based on Intelligent Information Technology to improve Livestock Productivity and Livestock Environment (축산물 생산성 향상 및 축산 환경 개선을 위한 지능정보기술 기반 스마트 축사 연구 및 기술 동향 분석)

  • Kim, Cheol-Rim;Kim, Seungchoen
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.133-139
    • /
    • 2022
  • Recently, livestock farms in Korea are introducing data-based technologies to improve productivity, such as livestock environment and breeding management, safe livestock production, and animal welfare. In addition, the government has been conducting a smart livestock distribution project since 2017 through the modernization of ICT-based livestock facilities in order to improve the productivity of livestock products and improve the livestock environment as a policy. However, the current smart livestock house has limitations in connection, diversity, and integration between monitoring and control. Therefore, in order to intelligently systemize all processes of livestock with intelligent algorithms and remote control in order to link and integrate various monitoring and control, the Internet of Things, big data, artificial intelligence, cloud computing, and mobile It is necessary to develop a smart livestock system. In this study, domestic and foreign research trends related to smart livestock based on intelligent information technology were introduced and the limitations of domestic application of advanced technologies were analyzed. Finally, future intelligent information technology applicable to the livestock field was examined.

KAB: Knowledge Augmented BERT2BERT Automated Questions-Answering system for Jurisprudential Legal Opinions

  • Alotaibi, Saud S.;Munshi, Amr A.;Farag, Abdullah Tarek;Rakha, Omar Essam;Al Sallab, Ahmad A.;Alotaibi, Majid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.346-356
    • /
    • 2022
  • The jurisprudential legal rules govern the way Muslims react and interact to daily life. This creates a huge stream of questions, that require highly qualified and well-educated individuals, called Muftis. With Muslims representing almost 25% of the planet population, and the scarcity of qualified Muftis, this creates a demand supply problem calling for Automation solutions. This motivates the application of Artificial Intelligence (AI) to solve this problem, which requires a well-designed Question-Answering (QA) system to solve it. In this work, we propose a QA system, based on retrieval augmented generative transformer model for jurisprudential legal question. The main idea in the proposed architecture is the leverage of both state-of-the art transformer models, and the existing knowledge base of legal sources and question-answers. With the sensitivity of the domain in mind, due to its importance in Muslims daily lives, our design balances between exploitation of knowledge bases, and exploration provided by the generative transformer models. We collect a custom data set of 850,000 entries, that includes the question, answer, and category of the question. Our evaluation methodology is based on both quantitative and qualitative methods. We use metrics like BERTScore and METEOR to evaluate the precision and recall of the system. We also provide many qualitative results that show the quality of the generated answers, and how relevant they are to the asked questions.

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

A Case Study of Educational Effectiveness by Software Subjects for Humanities College Students

  • Seo, Joo-Young;Shin, Seung-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.267-277
    • /
    • 2022
  • Recently, the topics of SW liberal-arts education are diversifying, from 'Computational Thinking(CT)' to 'Programming, Data Analysis and Artificial Intelligence(AI)' in universities. We expect that the diversification of SW liberal-arts subjects does not just mean that the learning contents are different, but also differentiates the educational goals and educational effects of each subject. In this paper, we conducted a case study to analyze the educational effect according to the educational goals of two SW liberal-arts subjects, CT and Data Analysis Fundamentals(DA), for humanities college students. We confirmed that the educational effect of 'CT Efficacy' increased significantly in accordance with the common educational goal of 'Improving CT-based SW convergence competency' in both subjects. However, we also analyzed the difference in the educational effects of 'CT(the goal of basic SW education)' and 'DA(the goal of major-friendly SW education)', which have different subject goals. 'CT' mainly showed an educational effect on how to solve general daily problems, and 'DA' showed confidence in how to solve major problems along with general problems.

A Study on White Space Search of Wireless Signal based Passive Tracking Technology using Enhanced Search Formula of Patent Analysis (개선된 검색식 기반 특허분석을 통한 무선신호 기반 Passive Tracking 공백기술 도출에 관한 연구)

  • Lee, Hangwon;Kim, Youngok
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.802-816
    • /
    • 2021
  • Purpose: In this paper, we propose a direction of future research and development to be carried out in the passive tracking field by deriving a white space with enhanced search formula of patent analysis. Method: In this paper, we derive a white space by identifying the direction and the flow of technology change and by matrixing the object and solution through extensive patent search with enhanced search formula and analysis in the field of passive tracking technology. Result: By the proposed scheme, 'multi-target positioning and tracking' and '3D positioning technology' using artificial intelligence, adaptive/hybrid positioning technology, and radar/antenna were derived as white space technologies and confirmed with absence of any services or products. Conclusion: The derived white space technologies from this paper are the areas where patent applications are not active and there are not many prior patents, thus it is necessary to secure the rights through more active R&D and patent application activities.

Valid Data Conditions and Discrimination for Machine Learning: Case study on Dataset in the Public Data Portal (기계학습에 유효한 데이터 요건 및 선별: 공공데이터포털 제공 데이터 사례를 통해)

  • Oh, Hyo-Jung;Yun, Bo-Hyun
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.37-43
    • /
    • 2022
  • The fundamental basis of AI technology is learningable data. Recently, the types and amounts of data collected and produced by the government or private companies are increasing exponentially, however, verified data that can be used for actual machine learning has not yet led to it. This study discusses the conditions that data actually can be used for machine learning should meet, and identifies factors that degrade data quality through case studies. To this end, two representative cases of developing a prediction model using public big data was selected, and data for actual problem solving was collected from the public data portal. Through this, there is a difference from the results of applying valid data screening criteria and post-processing. The ultimate purpose of this study is to argue the importance of data quality management that must be most fundamentally preceded before the development of machine learning technology, which is the core of artificial intelligence, and accumulating valid data.

Humidity Sensor Using Microstrip Patch Antenna (마이크로스트립 패치 안테나를 이용한 습도 센서)

  • Junho Yeo
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.71-76
    • /
    • 2023
  • In this paper, a humidity sensor using a microstrip patch antenna(MPA) and polyvinyl alcohol(PVA) is studied. PVA is a polymer material whose permittivity changes with humidity, and a rectangular slot is added to the radiating edge of the MPA, which is sensitive to changes in electric field, in order to increase the sensitivity to changes in relative permittivity. After thinly coating the area around the radiating edge with the rectangular slot of the MPA fabricated on a 0.76 mm-thick RF-35 substrate with PVA, the changes in the resonant frequency and magnitude of the MPA's input reflection coefficient are measured when relative humidity is adjusted from 40% to 80% in 10% increments at a temperature of 25 degrees using a temperature and humidity chamber. Experiment results show that when the relative humidity increases from 40% to 80%, the resonance frequency of the antenna' input reflection coefficient decreases from 2.447 GHz to 2.418 GHz, whereas the magnitude increases from -7.112 dB to -3.428 dB.

Academic Development Status of Climate Dynamics in Korean Meteorological Society (한국기상학회 기후역학 분야 학술 발전 현황)

  • Soon-Il An;Sang-Wook Yeh;Kyong-Hwan Seo;Jong-Seong Kug;Baek-Min Kim;Daehyun Kim
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.125-154
    • /
    • 2023
  • Since the Korean Meteorological Society was organized in 1963, the climate dynamics fields have been made remarkable progress. Here, we documented the academic developments in the area of climate dynamics performed by members of Korean Meteorological Society, based on studies that have been published mainly in the Journal of Korean Meteorological Society, Atmosphere, and Asia-Pacific Journal of Atmospheric Sciences. In these journals, the fundamental principles of typical ocean-atmosphere climatic phenomena such as El Niño, Madden-Julian Oscillation, Pacific Decadal Oscillation, and Atlantic Multi-decadal Oscillation, their modeling, prediction, and its impact, are being conducted by members of Korean Meteorological Society. Recently, research has been expanded to almost all climatic factors including cryosphere and biosphere, as well as areas from a global perspective, not limited to one region. In addition, research using an artificial intelligence (AI), which can be called a cutting-edge field, has been actively conducted. In this paper, topics including intra-seasonal and Madden-Julian Oscillations, East Asian summer monsoon, El Niño-Southern Oscillation, mid-latitude and polar climate variations and some paleo climate and ecosystem studies, of which driving mechanism, modeling, prediction, and global impact, are particularly documented.

Ensemble-based deep learning for autonomous bridge component and damage segmentation leveraging Nested Reg-UNet

  • Abhishek Subedi;Wen Tang;Tarutal Ghosh Mondal;Rih-Teng Wu;Mohammad R. Jahanshahi
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.335-349
    • /
    • 2023
  • Bridges constantly undergo deterioration and damage, the most common ones being concrete damage and exposed rebar. Periodic inspection of bridges to identify damages can aid in their quick remediation. Likewise, identifying components can provide context for damage assessment and help gauge a bridge's state of interaction with its surroundings. Current inspection techniques rely on manual site visits, which can be time-consuming and costly. More recently, robotic inspection assisted by autonomous data analytics based on Computer Vision (CV) and Artificial Intelligence (AI) has been viewed as a suitable alternative to manual inspection because of its efficiency and accuracy. To aid research in this avenue, this study performs a comparative assessment of different architectures, loss functions, and ensembling strategies for the autonomous segmentation of bridge components and damages. The experiments lead to several interesting discoveries. Nested Reg-UNet architecture is found to outperform five other state-of-the-art architectures in both damage and component segmentation tasks. The architecture is built by combining a Nested UNet style dense configuration with a pretrained RegNet encoder. In terms of the mean Intersection over Union (mIoU) metric, the Nested Reg-UNet architecture provides an improvement of 2.86% on the damage segmentation task and 1.66% on the component segmentation task compared to the state-of-the-art UNet architecture. Furthermore, it is demonstrated that incorporating the Lovasz-Softmax loss function to counter class imbalance can boost performance by 3.44% in the component segmentation task over the most employed alternative, weighted Cross Entropy (wCE). Finally, weighted softmax ensembling is found to be quite effective when used synchronously with the Nested Reg-UNet architecture by providing mIoU improvement of 0.74% in the component segmentation task and 1.14% in the damage segmentation task over a single-architecture baseline. Overall, the best mIoU of 92.50% for the component segmentation task and 84.19% for the damage segmentation task validate the feasibility of these techniques for autonomous bridge component and damage segmentation using RGB images.

Comparative Study on Seismic Fragility Curve Derivation Methods of Buried Pipeline Using Finite Element Analysis (유한요소 해석을 활용한 매설 배관의 지진 취약도 곡선 도출 기법 비교)

  • Lee, Seungjun;Yoon, Sungsik;Song, Hyeonsung;Lee, Jinmi;Lee, Young-Joo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.213-220
    • /
    • 2023
  • Seismic fragility curves play a crucial role in assessing potential seismic losses and predicting structural damage caused by earthquakes. This study compares non-sampling-based methods of seismic fragility curve derivation, particularly the probabilistic seismic demand model (PSDM) and finite element reliability analysis (FERA), both of which require employing sophisticated finite element analysis to evaluate and predict structural damage caused by earthquakes. In this study, a three-dimensional finite element model of API 5L X65, a buried gas pipeline widely used in Korea, is constructed to derive seismic fragility curves. Its seismic vulnerability is assessed using nonlinear time-history analysis. PSDM and a FERA are employed to derive seismic fragility curves for comparison purposes, and the results are verified through a comparison with those from the Monte Carlo Simulation (MCS). It is observed that the fragility curves obtained from PSDM are relatively conservative, which is attributed to the assumption introduced to consider the uncertainty factors. In addition, this study provides a comprehensive comparison of seismic fragility curve derivation methods based on sophisticated finite element analysis, which may contribute to developing more accurate and efficient seismic fragility analysis.