• Title/Summary/Keyword: AGV controller

Search Result 74, Processing Time 0.029 seconds

Autonomous Guided Vehicle Control Using GA-Fuzzy System (GA-Fuzzy 시스템을 이용한 무인 운송차의 제어)

  • 나영남;손영수;오창윤;이강현;배상현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.45-55
    • /
    • 1997
  • According to the increase of factory-automation in the field of production, the importance of autonomous guided vehicle's(AGV) role is also increased. The study about an active and effective controller which can flexibly prepare for the changeable circumstance is in progressed. For this study, the research about action base system to evolve by itself is also being actively considered. In this paper, we composed an active and effective AGV fuzzy controller to be able to do self-organization. For composing it, we tuned suboptimally membership function using genetic algorithm(GA) and improved the control efficiency by the self-correction and generating the control rules. Self-organizing controlled(S0C) fuzzy controller proposed in the paper is capable of self-organizing by using the characteristics of fuzzy controller and genetic algorithm. It intuitionally controls AGV and easily adapts to the circumstance.

  • PDF

An adaptive Control of the Nonholonomic Mobile AGV

  • Han, Zhe-Yong;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.307-310
    • /
    • 2001
  • Mobile AGV is one of the nonholon-omic systems. The integration of the kinematic adaptive controller for the dynamic in this pa-per introduction a motion control problem's dynamic state feedback as well as output feedback tracking laws will be constructed with the adaptive extension of the controller is proposed. Feedback control strategies for mobile AGV are important to compensate for disturabances and errors in the initial condition. The problems of path following or tracking and of stabilization about a constant configuration have been treated as separate problems for nonholonomic mobile AGV.

  • PDF

A Study on the Path-Tracking of Optically Guided AGV (Optical 센서를 갖는 AGV의 경로추적에 대한 연구)

  • Ryu, Je-Young;Han, Zhe-Yong;Cho, Duk-Young;Huh, Uk-Youl;Im, Il-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.500-502
    • /
    • 1999
  • This thesis deals with study and implementation of a cross-coupling controller which can enhance the path-tracking performance of optically guided AGV(Automated Guided Vehicle). The AGV in this thesis is differential drive type and has front-side and rear-side optical sensors, which can identify the guiding path. When AGV from the path due to the inevitable error and the deviation must be corrected. It has been shown that compensation only the first term can lead to undesirable oscillatory results and even instability but compensating only the second term leads to a steady state offset error. Cross-coupling control directly minimizes the error by coordinating the motion of the two drive wheels. The cross-coupling controller is analyzed to evaluate its performance. The cross-coupling controller enhances transient performance of the controller is demonstrated by simulation and is compared with that of individual loop controller.

  • PDF

A Study on Driving Control of an Autonomous Guided Vehicle Using Humoral Immune Algorithm(HIA) Adaptive Controller (생체면역알고리즘 적응 제어기를 이용한 AGV 주행제어에 관한 연구)

  • Lee, K.S.;Suh, J.H.;Lee, Y.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.194-201
    • /
    • 2005
  • In this paper, we propose an adaptive mechanism based on humoral immune algorithm and neural network identifier technique. It is also applied for an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To slove this problem, we use the neural network identifier technique for modeling the plant humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. Finally, the experimental results for control of steering and speed of AGV system illustrate the validity of the proposed control scheme. Also, these results for the proposed method show that it has better performance than other conventional controller design method such as PID controller.

  • PDF

A Design of Two Degree of Freedom PID Controller for AGV using Immune Algorithm (면역 알고리즘을 이용한 AGV의 2자유도 PID조향 제어기 설계에 관한 연구)

  • 이창훈;이진우;이영진;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.229-234
    • /
    • 2002
  • Immune system is an evolutionary biological system to protect Innumerable foreign materials such as virus, germ cell, and et cetera. Immune algorithm is the modeling of this system'response that has adaptation and reliableness when disturbance occur. In this paper, immune algorithm controller was proposed to control four wheels steering(4ws) Automated Guided vehicle(AGV) in container yard. And then the simulation result was analysed and compared with the results of NN-PID controller.

  • PDF

Design and Implementation of the Dual Motor Drive AGV Controller Using CPLD (CPLD를 이용한 이륜 속도차방식 AGV 제어기 설계 및 구현)

  • 진중호;백한석;한석붕
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.209-212
    • /
    • 2000
  • This paper describes the design and implementation of a hard- wired AGV controller using CPLD(Complex Programmable Logic Device). The proposed controller manages a guidance equipment, motor and I/O sequence controller for a self-control traveling. Compared with a conventional $\mu$-processor, the CPLD controller using a hard-wired control method can reduce a difficult programming process. Also, the total costs of production are reduced, such as development time, product's size and difficulty because memory, combinational logic and sequential logics are implemented by CPLD. The Controller designed using behavioral description method with VHDL and was synthesized by MAX+Plus II of the ALTERA co. We implemented controller using EPF10K10LC84-4 device.

  • PDF

A Path Generation Algorithm of an Automatic Guided Vehicle Using Sensor Scanning Method

  • Park, Tong-Jin;Ahn, Jung-Woo;Han, Chang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • In this paper, a path generation algorithm that uses sensor scannings is described. A scanning algorithm for recognizing the ambient environment of the Automatic Guided Vehicle (AGV) that uses the information from the sensor platform is proposed. An algorithm for computing the real path and obstacle length is developed by using a scanning method that controls rotating of the sensors on the platform. The AGV can recognize the given path by adopting this algorithm. As the AGV with two-wheel drive constitute a nonholonomic system, a linearized kinematic model is applied to the AGV motor control. An optimal controller is designed for tracking the reference path which is generated by recognizing the path pattern. Based on experimental results, the proposed algorithm that uses scanning with a sensor platform employing only a small number of sensors and a low cost controller for the AGV is shown to be adequate for path generation.

Autonomous Guided Vehicle Control Using SOC Genetic Algorithm (적응적 유전자 알고리즘을 이용한 무인운송차의 제어)

  • Jang, Bong-Seok;Bae, Sang-Hyun;Jung, Heon
    • Journal of Internet Computing and Services
    • /
    • v.2 no.2
    • /
    • pp.105-116
    • /
    • 2001
  • According to increase of the factory-automation's(FA) in the field of production, the autonomous guided vehicle's(AGV) role is also increased, The study about an active and effective controller which can flexibly prepare for the changeable circumstance is in progressed. For this study. the research about ac1ion base system to evolve by itself is also being actively considered In this paper. we composed an ac1ive and effective AGV fuzzy controller to be able to do self-organization, For composing it. we tuned suboptimally membership function using genetic algorithm(GA) and improved the control efficiency by the self-correction and generating the control rules. self-organizing controlled(SOC) fuzzy controller proposed in this paper is capable of Self-organizing by using the characteristics of fuzzy controller and genetic algorithm. It intuitionally controls AGV and easily adapts to the circumstance.

  • PDF

An AGV Driving Control using immune Algorithm Adaptive Controller (면역알고리즘 적응 제어기를 이용한 AGV 주행제어에 관한 연구)

  • Lee, Yeong-Jin;Lee, Gwon-Sun;Lee, Jang-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.4
    • /
    • pp.201-212
    • /
    • 2000
  • In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied for the autonomous guided vehicle(AGV) driving. When the immune algorithm is applied to the PID controller, there exists the cast that the plant is damaged due to the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network is used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough intially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. The computer simulation for the control of steering and speed of AGV is performed. The results show that the proposed controller has better performances than other conventional controllers.

  • PDF

Steering Performance Test of Autonomous Guided Vehicle(AGV) Based on Global Navigation Satellite System(GNSS) (위성항법 기반 AGV(Autonomous Guided Vehicle)의 조향 성능 시험)

  • Kang, Woo-Yong;Lee, Eun-Sung;Kim, Jeong-Won;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.180-187
    • /
    • 2010
  • In this paper, a GNSS-based AGV system was designed, and steering tested on a golf cart using electric wires in order to confirm the control efficiency of the low speed vehicle which used only position information of GNSS. After analyzed the existing AGVs system, we developed controller and steering algorithm using GNSS based position information. To analyze the performance of the developed controller and steering algorithm, straight-type and circle-type trajectory test are executed. The results show that steering performance of GNSS-based AGV system is ${\pm}\;0.2m$ for a reference trajectory.