• Title/Summary/Keyword: AGS cell

Search Result 283, Processing Time 0.031 seconds

Induction of Apoptosis by Hwangheuk-san in AGS Human Gastric Carcinoma Cells through the Generation of Reactive Oxygen Species and Activation of Caspases (AGS 인체 위암세포에서 황흑산에 의한 ROS 생성 및 caspase 활성 의존적 apoptosis 유발)

  • Hong, Su Hyun;Park, Cheol;Kim, Kyoung Min;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1235-1243
    • /
    • 2015
  • Hwangheuk-san (HHS) is a Korean multi-herb formula comprising four medicinal herbs. HHS, which was recorded in “Dongeuibogam,” has been used to treat patients with inflammation syndromes and digestive tract cancer for hundreds of years. However, little is known about its anti-tumor efficacy. The present study investigated the pro-apoptotic effect and mode of action of HHS against AGS human gastric carcinoma cells. HHS inhibited the cell growth of AGS cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies, chromatin condensation, and an accumulation of cells in the sub-G1 phase. HHS-induced apoptotic cell death was associated with the up-regulation of pro-apoptotic Bax protein expression, down-regulation of antiapoptotic Bcl-2 protein, and the release of cytochrome c from mitochondria to the cytosol. The treatment of AGS cells with HHS significantly elevated the generation of reactive oxygen species (ROS). Additionally, apoptosis-inducing concentrations of HHS induced the activation of both caspase-9 and -8, initiator caspases of the mitochondrial-mediated intrinsic and death receptor-mediated extrinsic pathways, respectively, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose)-polymerase. However, ROS scavenger and pan-caspases inhibitor significantly blocked HHS-induced growth inhibition and apoptosis. Taken together, these findings suggest that HHS induces apoptosis through ROS- and caspase-dependent mechanisms and that HHS may be a potential chemotherapeutic agent for the control of human gastric cancer.

Inhibition of PI3K/AKT Signaling Pathway Enhances Cordycepin-Induced Apoptosis in Human Gastric Cancer Cells (인체위암 세포에서 PI3K/AKT 신호 전달계 차단에 의한 동충하초 유래 Cordycepin의 Apoptosis 유발 효과 증진)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.835-842
    • /
    • 2016
  • The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays a crucial role in cancer occurrence by promoting cell proliferation and inhibiting apoptosis. In the present study, we evaluated the effect of a PI3K inhibitor, LY294002, on the chemosensitivity of gastric cancer cells to cordycepin, a predominant functional component of the fungus Cordyceps militaris, in AGS human gastric cancer cells and investigated possible underlying cellular mechanisms. Our results revealed that cordycepin inhibited viability of AGS cells in a concentration-dependent manner and induced apoptosis, as determined by apoptotic cell morphologies and fluorescence-activated cell sorting analysis associated with attenuated activation of the PI3K/Akt signaling pathway. Treatment with cordycepin in combination with a subtoxic concentration of LY294002 enhanced cordycepin-induced cytotoxicity and apoptotic potentials in AGS cells. Sensitization of LY294002 to cordycepin-induced apoptosis was accompanied by activation of caspases (caspases-3, -8, and -9) and was concomitant with poly(ADP-ribose) polymerase cleavage. Moreover, LY294002 up-regulated pro-apoptotic Bax and enhanced truncation of Bid in cordycepin-treated AGS cells, which was connected with increased loss of mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. Taken together, these results indicate that inhibition of the PI3K/Akt signaling pathway could augment cordycepin-induced apoptosis in human gastric cancer cells by up-regulating caspase activity through mitochondrial dysfunction.

Effect of Fermented Compositions Containing Inonotus obliquus with Houttuynia cordata on Growth of Human AGS Gastric and HCT-15 Colon Cancer Cells (차가버섯과 어성초 함유 발효 조성물이 인체 위암 AGS 및 대장암 HCT-15 세포 생육에 미치는 영향)

  • Cha, Jae-Young;Jeon, Beong-Sam;Park, Jeong-Won;Moon, Jae-Chul;Cho, Young-Su
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.202-207
    • /
    • 2004
  • This study was performed to investigate the inhibitory effect of the water-extract from fermented compositions containing Inonotus obliquus with added Houttuynia cordata on the growth of either human AGS gastric and HCT-15 colon cancer cells or NIH3T3 normal mouse fibroblast cells. Cytotoxic activity on cancer cells was investigated by viable cell count, MTT assay and morphological observation. Mixtures of Inonotus obliquus with added Houttuynia cordata were fermented at $30{\sim}37^{\circ}C$, $50{\sim}60%$ humidity for 30 days, extracted with water, freeze dried, powered, and then dissolved in water for the experiment. In MTT assay, the fermented compositions exhibited inhibitory effects of 13, 25, 40, 67 and 78% for AGS and 22, 40, 50, 69 and 76% for HCT-15 at 0.16, 0.4, 0.8, 1.6 and 4.0 mg/ml, respectively. However, normal NIH3T3 cells were exhibited 86% survival under the same experimental condition. Fermented compositions showed highly inhibitory effect against human cancer cell line HCT-15 and AGS, but not on normal cell line NIH3T3.

Purification of Cucurbitacins D, E, and I from Ecballium Elaterium (L.) A. Rich Fruits and Study of Their Cytotoxic Effects on the AGS Cell Line

  • Jafargholizadeh, Naser;Zargar, Seyed Jalal;Yassa, Narguess;Tavakoli, Saeed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.10
    • /
    • pp.4631-4635
    • /
    • 2016
  • Background: The plant Ecballium elaterium (L.) A. Rich, belongs to the Cucurbitaceae family which occupies an important position in traditional medicine prescriptions. It has been reported that a freeze-dried aqueous extract of E. elaterium fruits has cytotoxic effects on the AGS human stomach adenocarcinoma cell line. We here focused on anticancer effects of the main chemicals purified from E. elaterium fruits. Materials and Methods: We isolated cucurbitacins D, E, and I from chloroform, and ethyl acetate fractions of a methanolic extract of E. elaterium fruits and assessed their cytotoxic effects on the AGS cell line by MTT assay. The methanolic extract was fractionated to petroleum ether, chloroform, and ethyl acetate fractions. The compounds isolated by column chromatography were identified by NMR spectroscopy. Results: After 24 h of incubation with AGS cells, the IC50 values were 0.3, 0.1, and $0.5{\mu}g/ml$ for cucurbitacins D, E, and I respectively. Conclusions: This finding suggests that because of its cucurbitacins, E. elaterium fruit may have some cytotoxic effects on gastric cancer cells. Also, compared with D and I, cucurbitacin E showed greater potency in this regard.

Antiproliferative Activity of Convergence of Vegetable Extract in Cancer cells (야채추출물의 융복합적 암세포 증식 억제효과)

  • Park, Hae-Ran;Park, Jeong-Sook
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.491-496
    • /
    • 2016
  • The present sturdy was designed to determine the effect of the antiproliferation in human cancer cells, using vegetable extract of Radish, Radish leaves, Burdock, Shiitake, Carrot of the ordinary vegetable soup. Human cancer cells identify the cancer cell growth with MTS, using stomach cancer cell line (AGS), human promyelocytic leukemia (HL-60) and lung cancer cell line (A549). Shiitake and Carrot are effective on the cancer cell growth inhibition activities of AGS. Radish leaves, Burdock, Carrot have a significance with HL-60 and Radish, Radish leaves works well in A549. The vegetable extracts which is effective for cancer cell growth inhibition is considered to applicate base line data for using functional materials and for wellness life.

Induction of Apoptosis and Cell Cycle Arrest by Dorema Glabrum Root Extracts in a Gastric Adenocarcinoma (AGS) Cell Line

  • Jafari, Naser;Zargar, Seyed Jalal;Yassa, Narguess;Delnavazi, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5189-5193
    • /
    • 2016
  • Objective: Dorema glabrum Fisch. & C.A. Mey is a perennial plant that has several curative properties. Anti-proliferative activity of seeds of this plant has been demonstrated in a mouse fibrosarcoma cell line. The aim of the present study was to evaluate cytotoxicity of D. glabrum root extracts in a human gastric adenocarcinoma (AGS) cell line and explore mechanisms of apoptosis induction, cell cycle arrest and altered gene expression in cancer cells. Materials and Methods: The MTT assay was used to evaluate IC50 values, EB/AO staining to analyze the mode of cell death, and flow cytometry to assess the cell cycle. Quantitative real-time polymerase chain reaction (qRT-PCR) amplification was performed with apoptosis and cell cycle-related gene primers, for cyclin D1, c-myc, survivin, VEGF, Bcl-2, Bax, and caspase-3 to determine alteration of gene expression. Results: Our results showed that n-hexane and chloroform extracts had greatest toxic effects on gastric cancer cells with IC50 values of $6.4{\mu}g/ml$ and $4.6{\mu}g/ml$, respectively, after 72 h. Cell cycle analysis revealed that the population of treated cells in the G1 phase was increased in comparison to controls. Cellular morphological changes indicated induction of apoptosis. In addition, mRNA expression levels of Bax and caspase-3 were increased, and of bcl-2 survivin, VEGF, c-myc and cyclin D1 were decreased. Conclusion: Our study results suggest that D. glabrum has cytotoxic effects on AGS cells, characterized by enhanced apoptosis, reduced cell viability and arrest of cell cycling.

Chestnut extract induces apoptosis in AGS human gastric cancer cells

  • Lee, Hyun-Sook;Kim, Eun-Ji;Kim, Sun-Hyo
    • Nutrition Research and Practice
    • /
    • v.5 no.3
    • /
    • pp.185-191
    • /
    • 2011
  • In Korea, chestnut production is increasing each year, but consumption is far below production. We investigated the effect of chestnut extracts on antioxidant activity and anticancer effects. Ethanol extracts of raw chestnut (RCE) or chestnut powder (CPE) had dose-dependent superoxide scavenging activity. Viable numbers of MDA-MD-231 human breast cancer cells, DU145 human prostate cancer cells, and AGS human gastric cancer cells decreased by 18, 31, and 69%, respectively, following treatment with $200{\mu}g/mL$ CPE for 24 hr. CPE at various concentrations ($0-200{\mu}g/mL$) markedly decreased AGS cell viability and increased apoptotic cell death dose and time dependently. CPE increased the levels of cleaved caspase-8, -7, -3, and poly (ADP-ribose) polymerase in a dose-dependent manner but not cleaved caspase-9. CPR exerted no effects on Bcl-2 and Bax levels. The level of X-linked inhibitor of apoptosis protein decreased within a narrow range following CPE treatment. The levels of Trail, DR4, and Fas-L increased dose-dependently in CPE-treated AGS cells. These results show that CPE decreases growth and induces apoptosis in AGS gastric cancer cells and that activation of the death receptor pathway contributes to CPE-induced apoptosis in AGS cells. In conclusion, CPE had more of an effect on gastric cancer cells than breast or prostate cancer cells, suggesting that chestnuts would have a positive effect against gastric cancer.

Benzyl Isothiocyanate-Induced Cytotoxicity via the Inhibition of Autophagy and Lysosomal Function in AGS Cells

  • Po, Wah Wah;Choi, Won Seok;Khing, Tin Myo;Lee, Ji-Yun;Lee, Jong Hyuk;Bang, Joon Seok;Min, Young Sil;Jeong, Ji Hoon;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.348-359
    • /
    • 2022
  • Gastric adenocarcinoma is among the top causes of cancer-related death and is one of the most commonly diagnosed carcinomas worldwide. Benzyl isothiocyanate (BITC) has been reported to inhibit the gastric cancer metastasis. In our previous study, BITC induced apoptosis in AGS cells. The purpose of the present study was to investigate the effect of BITC on autophagy mechanism in AGS cells. First, the AGS cells were treated with 5, 10, or 15 μM BITC for 24 h, followed by an analysis of the autophagy mechanism. The expression level of autophagy proteins involved in different steps of autophagy, such as LC3B, p62/SQSTM1, Atg5-Atg12, Beclin1, p-mTOR/mTOR ratio, and class III PI3K was measured in the BITC-treated cells. Lysosomal function was investigated using cathepsin activity and Bafilomycin A1, an autophagy degradation stage inhibitor. Methods including qPCR, western blotting, and immunocytochemistry were employed to detect the protein expression levels. Acridine orange staining and omnicathepsin assay were conducted to analyze the lysosomal function. siRNA transfection was performed to knock down the LC3B gene. BITC reduced the level of autophagy protein such as Beclin 1, class III PI3K, and Atg5-Atg12. BITC also induced lysosomal dysfunction which was shown as reducing cathepsin activity, protein level of cathepsin, and enlargement of acidic vesicle. Overall, the results showed that the BITC-induced AGS cell death mechanism also comprises the inhibition of the cytoprotective autophagy at both initiation and degradation steps.

Anticancer Effects of Organic Chinese Cabbage Kimchi

  • Park, Woon-Young;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.2
    • /
    • pp.113-116
    • /
    • 1999
  • The anticancer effect of methanol extracts from common Chinese cabbage kimchi(CC kimchi ) and organically cultivated Chinese cabbage kimchi (OC kimchi) was studied on the cell growth, MTT assay and SRB assay using AGS human gastric cancer cells. Methanol extracts from CC kimchi and OC kimchi exhibited the anticancer activites in vitro and in vivo. Methanol extract from 6 day-fermented CC kimchi and OC kimchi inhibited the growth of AGS cells by 55.2 and 60.7% , respectively. At MTT assay an dSRB assay, 6 day-fermented OC kimchi showed higher inhibition rate (MTT : 42%, SRB : 61%) than 6 day-fermented CC kimchi(MTT : 33%, SRB : 52%). Methanol extracts from 6-day fermented CC kimchi and OC reduced the tumor formation and prolonged the life span of sarcoma-180 cell injected Balb.c mouse. OC kimchi treated group resulted in the smaller tumor weight of 4.58$\pm$0.32g compared th the CC kimchi group of 5.40$\pm$0.78g and the control group of 7.50$\pm$0.54g and OC kimchi treted group (25.3 days) lived longest among control (20.2days ) and CC kimchi(23.5days) treted groups.

  • PDF

The role of ginseng total saponin in transient receptor potential melastatin type 7 channels

  • Kim, Byung Joo
    • Animal cells and systems
    • /
    • v.16 no.5
    • /
    • pp.376-384
    • /
    • 2012
  • Although ginsenosides have a variety of physiologic or pharmacologic functions in various regions, there are only a few reports on the effects of transient receptor potential melastatin 7 (TRPM7) channels. Here, we showed evidence suggesting that TRPM7 channels play an important role in ginseng total saponin (GTS)-mediated cellular injury. The combination techniques of electrophysiology, pharmacological analysis, small interfering RNA (siRNA) method and cell death assays were used. GTS depolarized the resting membrane potentials and decreased the amplitude of pacemaker potentials in cultured interstitial cells of Cajal (ICCs) in gastrointestinal (GI) tract. The TRPM7-like currents in single ICCs and the overexpressing TRPM7 in HEK293 cells were inhibited by GTS. However, GTS had no effect on $Ca^{2+}$-activated $Cl^-$ conductance. GTS inhibited the survival of human gastric (AGS) and brea (MCF-7) adenocarcinoma cells. Also, GTS inhibited the TRPM7-like currents in AGS and MCF-7 cells. The GTS-mediated cytotoxicity was inhibited by TRPM7-specific siRNA. In addition, we showed that overexpression of TRPM7 channels in HEK293 cells was inhibited by GTS. Thus, TRPM7 channels are involved in GTS-mediated cell death in AGS and MCF-7 cells, and these channels may represent a novel target for physiological disorders where GTS plays an important role.