• Title/Summary/Keyword: AFT Model

Search Result 54, Processing Time 0.026 seconds

A Prediction Model on Freeway Accident Duration using AFT Survival Analysis (AFT 생존분석 기법을 이용한 고속도로 교통사고 지속시간 예측모형)

  • Jeong, Yeon-Sik;Song, Sang-Gyu;Choe, Gi-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.135-148
    • /
    • 2007
  • Understanding the relation between characteristics of an accident and its duration is crucial for the efficient response of accidents and the reduction of total delay caused by accidents. Thus the objective of this study is to model accident duration using an AFT metric model. Although the log-logistic and log-normal AFT models were selected based on the previous studies and statistical theory, the log-logistic model was better fitted. Since the AFT model is commonly used for the purpose of prediction, the estimated model can be also used for the prediction of duration on freeways as soon as the base accident information is reported. Therefore, the predicted information will be directly useful to make some decisions regarding the resources needed to clear accident and dispatch crews as well as will lead to less traffic congestion and much saving the injured.

Analysis of the Effect of Deep-learning Super-resolution for Fragments Detection Performance Enhancement (파편 탐지 성능 향상을 위한 딥러닝 초해상도화 효과 분석)

  • Yuseok Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.234-245
    • /
    • 2023
  • The Arena Fragmentation Test(AFT) is designed to analyze warhead performance by measuring fragmentation data. In order to evaluate the results of the AFT, a set of AFT images are captured by high-speed cameras. To detect objects in the AFT image set, ResNet-50 based Faster R-CNN is used as a detection model. However, because of the low resolution of the AFT image set, a detection model has shown low performance. To enhance the performance of the detection model, Super-resolution(SR) methods are used to increase the AFT image set resolution. To this end, The Bicubic method and three SR models: ZSSR, EDSR, and SwinIR are used. The use of SR images results in an increase in the performance of the detection model. While the increase in the number of pixels representing a fragment flame in the AFT images improves the Recall performance of the detection model, the number of pixels representing noise also increases, leading to a slight decreases in Precision performance. Consequently, the F1 score is increased by up to 9 %, demonstrating the effectiveness of SR in enhancing the performance of the detection model.

Penalized variable selection in mean-variance accelerated failure time models (평균-분산 가속화 실패시간 모형에서 벌점화 변수선택)

  • Kwon, Ji Hoon;Ha, Il Do
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.411-425
    • /
    • 2021
  • Accelerated failure time (AFT) model represents a linear relationship between the log-survival time and covariates. We are interested in the inference of covariate's effect affecting the variation of survival times in the AFT model. Thus, we need to model the variance as well as the mean of survival times. We call the resulting model mean and variance AFT (MV-AFT) model. In this paper, we propose a variable selection procedure of regression parameters of mean and variance in MV-AFT model using penalized likelihood function. For the variable selection, we study four penalty functions, i.e. least absolute shrinkage and selection operator (LASSO), adaptive lasso (ALASSO), smoothly clipped absolute deviation (SCAD) and hierarchical likelihood (HL). With this procedure we can select important covariates and estimate the regression parameters at the same time. The performance of the proposed method is evaluated using simulation studies. The proposed method is illustrated with a clinical example dataset.

Penalized variable selection for accelerated failure time models

  • Park, Eunyoung;Ha, Il Do
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.591-604
    • /
    • 2018
  • The accelerated failure time (AFT) model is a linear model under the log-transformation of survival time that has been introduced as a useful alternative to the proportional hazards (PH) model. In this paper we propose variable-selection procedures of fixed effects in a parametric AFT model using penalized likelihood approaches. We use three popular penalty functions, least absolute shrinkage and selection operator (LASSO), adaptive LASSO and smoothly clipped absolute deviation (SCAD). With these procedures we can select important variables and estimate the fixed effects at the same time. The performance of the proposed method is evaluated using simulation studies, including the investigation of impact of misspecifying the assumed distribution. The proposed method is illustrated with a primary biliary cirrhosis (PBC) data set.

Experiment for Seated Human Body to Vertical/Fore-and-aft/Pitch Excitation (착석자세 인체의 상하/전후/피치 가진 시험)

  • Kim, Jong-Wan;Kim, Ki-Sun;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.656-660
    • /
    • 2009
  • Various dynamic models of seated posture human body have been developed because the importance about the ride comfort assessment of vehicles is highly emphasized from day to day. The dynamic models of human body make possible the simulation of ride comfort assessment by applied to the vehicle dynamic model. Recently, the importance of ride comfort is also regarded to working vehicles such as excavators and the research of the ride comfort assessment for working vehicle is required. Only vertical vibration dominantly occurs on the seat of the private car driving with constant velocity. In contrast, vertical/fore-and-aft/pitch vibration seriously occurs on the seat of the working excavator. So, the dynamic models of seated human body applied to working vehicles should describe the dynamic characteristics for vertical/fore-and-aft/pitch direction. In this paper, the dynamic characteristics of seated human body are represented as apparent inertia matrix. The apparent inertia matrix is obtained by the vertical/fore-and-aft/pitch excitation of seated human body. 6 resonance frequencies are observed in apparent inertia matrix. This result can be applied to develop the dynamic model for seated posture human body.

  • PDF

Gene-Gene Interaction Analysis for the Accelerated Failure Time Model Using a Unified Model-Based Multifactor Dimensionality Reduction Method

  • Lee, Seungyeoun;Son, Donghee;Yu, Wenbao;Park, Taesung
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.166-172
    • /
    • 2016
  • Although a large number of genetic variants have been identified to be associated with common diseases through genome-wide association studies, there still exits limitations in explaining the missing heritability. One approach to solving this missing heritability problem is to investigate gene-gene interactions, rather than a single-locus approach. For gene-gene interaction analysis, the multifactor dimensionality reduction (MDR) method has been widely applied, since the constructive induction algorithm of MDR efficiently reduces high-order dimensions into one dimension by classifying multi-level genotypes into high- and low-risk groups. The MDR method has been extended to various phenotypes and has been improved to provide a significance test for gene-gene interactions. In this paper, we propose a simple method, called accelerated failure time (AFT) UM-MDR, in which the idea of a unified model-based MDR is extended to the survival phenotype by incorporating AFT-MDR into the classification step. The proposed AFT UM-MDR method is compared with AFT-MDR through simulation studies, and a short discussion is given.

Prediction Model on Delivery Time in Display FAB Using Survival Analysis (생존분석을 이용한 디스플레이 FAB의 반송시간 예측모형)

  • Han, Paul;Baek, Jun Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.3
    • /
    • pp.283-290
    • /
    • 2014
  • In the flat panel display industry, to meet production target quantities and the deadline of production, the scheduler and dispatching systems are major production management systems which control the order of facility production and the distribution of WIP (Work In Process). Especially the delivery time is a key factor of the dispatching system for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors of the delivery time and to build the delivery time forecasting model. To select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the accelerated failure time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the mean square error (MSE) criteria, the AFT model decreased by 33.8% compared to the statistics prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing the delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.

An extension of multifactor dimensionality reduction method for detecting gene-gene interactions with the survival time (생존시간과 연관된 유전자 간의 교호작용에 관한 다중차원축소방법의 확장)

  • Oh, Jin Seok;Lee, Seung Yeoun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1057-1067
    • /
    • 2014
  • Many genetic variants have been identified to be associated with complex diseases such as hypertension, diabetes and cancers throughout genome-wide association studies (GWAS). However, there still exist a serious missing heritability problem since the proportion explained by genetic variants from GWAS is very weak less than 10~15%. Gene-gene interaction study may be helpful to explain the missing heritability because most of complex disease mechanisms are involved with more than one single SNP, which include multiple SNPs or gene-gene interactions. This paper focuses on gene-gene interactions with the survival phenotype by extending the multifactor dimensionality reduction (MDR) method to the accelerated failure time (AFT) model. The standardized residual from AFT model is used as a residual score for classifying multiple geno-types into high and low risk groups and algorithm of MDR is implemented. We call this method AFT-MDR and compares the power of AFT-MDR with those of Surv-MDR and Cox-MDR in simulation studies. Also a real data for leukemia Korean patients is analyzed. It was found that the power of AFT-MDR is greater than that of Surv-MDR and is comparable with that of Cox-MDR, but is very sensitive to the censoring fraction.

A Study on Analysis Method of Warranty Data Using Multivariate Model (다변량 모형을 이용한 보증데이터 분석 방법 연구)

  • Kim, Jong-Gurl;Sung, Ki-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.241-247
    • /
    • 2015
  • The purpose of the warranty data analysis can be classified into two categories. Two goals is a failure cause analysis and life prediction analysis. In this paper first, we applied multivariate analysis method that can be estimated in consideration of various factors on the failure cause warranty data. In particular, we apply the Tree model and Cox model. The advantage of the Tree is easy to interpret this result as compared to other models. In addition Cox model can quantitatively express the risk. Second, this paper proposed a multivariate life prediction model (AFT) considering a variety of factors. By applying the actual warranty data confirmed the usability.

Semiparametric support vector machine for accelerated failure time model

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.765-775
    • /
    • 2010
  • For the accelerated failure time (AFT) model a lot of effort has been devoted to develop effective estimation methods. AFT model assumes a linear relationship between the logarithm of event time and covariates. In this paper we propose a semiparametric support vector machine to consider situations where the functional form of the effect of one or more covariates is unknown. The proposed estimating equation can be computed by a quadratic programming and a linear equation. We study the effect of several covariates on a censored response variable with an unknown probability distribution. We also provide a generalized approximate cross-validation method for choosing the hyper-parameters which affect the performance of the proposed approach. The proposed method is evaluated through simulations using the artificial example.