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Abstract

For the accelerated failure time (AFT) model a lot of effort has been devoted to de-
velop effective estimation methods. AFT model assumes a linear relationship between
the logarithm of event time and covariates. In this paper we propose a semiparamet-
ric support vector machine to consider situations where the functional form of the
effect of one or more covariates is unknown. The proposed estimating equation can
be computed by a quadratic programming and a linear equation. We study the ef-
fect of several covariates on a censored response variable with an unknown probability
distribution. We also provide a generalized approximate cross-validation method for
choosing the hyper-parameters which affect the performance of the proposed approach.
The proposed method is evaluated through simulations using the artificial example.

Keywords: Accelerated failure time, generalized approximate cross validation function,
hyper-parameters, semiparametric regression model, support vector machine.

1. Introduction

Among popular models in analyzing failure time data are the Cox proportional hazards
(PH) model and the accelerated failure time (AFT) model. The AFT model is an appealing
alternative to the widely-used PH model, in which the logarithm, or a monotonic transfor-
mation of the survival time is modelled linearly in the covariates (Cox, 1972; Kalbfleisch
and Prentice, 2002). In general, the estimation of this model is carried out assuming a para-
metric error distribution. However, some authors have developed semiparametric estimation
methods of AFT models with an unspecified error distribution to avoid the need for this
parametric assumption. Two semiparametric methods have been mainly used in practice.
One method is the Buckley-James estimator which adjusts censored observations using the
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Kaplan-Meier estimator in the least squares regression. The other is the linear-rank-test-
based estimator which is motivated from the score function of the partial likelihood. See for
comprehensive expositions and references, Buckley and James (1979), Jones (1997), Tsiatis
(1990), Wei et al. (1990), Jin et al. (2003), Chen et al. (2005) and Shim (2005a).

Support vector machine (SVM) has been very successful in classification and regression
problems (Vapnik, 1998). See for references, Gunn (1998), Shim (2005b), Kim et al. (2008),
Shim and Seok (2008). In this paper we propose the semiparametric SVM for the AFT model
using a weighting system formed with the Kaplan-Meir estimator of censoring distribution.
The use of the Kaplan-Meier weights to account for censoring has been first proposed by
Stute (1993). The existing semiparametric estimation methods of the AFT model have
not been widely used in practice, mainly due to their complexity even when the number
of covariates is relatively small (Jin et al., 2003). In contrast, the proposed method can be
easily applied to the analysis of censored data with medium and high dimensional covariates.

In this paper we propose two versions of semiparametric SVMs for estimating AFT model
- a semiparametric SVM for censored data and a semiparametric SVM for censored data
using the iteratively reweighted least squares (IRWLS) procedure. The rest of this paper is
organized as follows. In Section 2 we give a brief overview of O-insensitive SVM for median
regression. In Section 3 we propose a semiparametric SVM for estimating AFT model with
the Kaplan-Meier weights for censored data and a generalized approximate cross-validation
(GACYV) method for determining the hyper-parameters which affect the performance of the
proposed model. In Section 4 we propose a semiparametric SVM for estimating AFT model
using IRWLS procedure and a GACV method. In Section 5 we present simulation studies
to illustrate our methods. Finally, we present the conclusions in Section 6.

2. Support vector machine for median regression

Let the training data set denoted by (z; y;)",, with each input @; € R? and the response
y; € R, where the output variable y; is related to the input vector x;. Here the feature
mapping function ¢(-) : R? — R maps the input space to the higher dimensional feature
space where the dimension dy is defined in an implicit way. An inner product in feature
space has an equivalent kernel function in input space, ¢(x;)'¢(x;) = K(x;, z;) (Mercer,
1909). We consider the nonlinear median regression case, in which the regression function
of the response given @, m(x), can be regarded as a nonlinear regression function of input
vector x.

With the absolute loss function, the estimator of the median can be defined as any solution
to the optimization problem,

. ]‘ / "
min §ww+C’Z|yifm(mi)|. (2.1)

i=1

We can express the regression problem by formulation for SVM as follows.

min %w’w +CY G+ (2.2)

i=1
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subject to

yi —w'o(x;) —b <& (2.3)
where w is a weight vector, ¢(x;) is a feature mapping function, b is a bias, and C' is a

regularization parameter penalizing the training errors. We construct a Lagrange function
as follows:

1 n n
L= §wlw + OZ(& +&) — Zaz’(ﬁi —yi + w'p(x;) + b) (2.4)

n

_Za §+yz_w¢$z _b mersz
=1 1=1
We notice that the positivity constraints o, a,n;,n > 0 should be satisfied. After tak-
ing partial derivatives of equation (2.4) with regard to the primal variables (w,&;, &) and
plugging them into equation (2.4), we have the optimization problem below.

1 - * * - *
max —o Z (i —af)(aj — o) K (zi, ;) + Z(ai — o)y
ij=1 i=1

with constraints

n
Z(ai —a;)=0and oy, €10,C],
i
where the data points corresponding to positive values of ; or o are called support vectors.

Solving the above equation with the constraints determines the optimal Lagrange multipliers,
o, o, the estimator of the median given the input vector « are obtained as follows.

(x) =b+ K(z,z) (& — &), (2.5)
where b is obtained via Kuhn-Tucker conditions (Kuhn and Tucker, 1951) such as,

1

b= ;Z(yi—K(wi,a})(d—a*)), (2.6)
Siel,
with ng a size of the set I, ={i=1,--- ,n|0 < &; < C,0 < & < C}.

In the nonlinear case, w is no longer explicitly given. However, it is uniquely defined in
the weak sense by the dot products. Here the linear regression model can be regarded as the
special case of the nonlinear regression model by using identity feature mapping function,
that is, ¢(x) = @ which implies the linear kernel such that K(x1,x2) = @) xo.

3. Semiparametric SVM with censored data

In this section, without loss of generality, we assume the input vector included in the
parametric part of the regression function is known to have the linear effect on the response
variable.
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Let t; be the response variables corresponding to vector, x; or transformation on it, where
i =1,2,--- ,n. Let (x;, z;) be the associated vector of covariates with (p,q) components.
Let m(x;, z;) be the regression function of the response variable given (x;, z;).

We assume that m(xz;, z;) is related to the vector of covariates (x;, z;) in a semiparametric
form as

m(x;, z;) = b+ B'x; +w'¢(z;) for i=1,2,---,n, (3.1)

where 3 is a (p x 1) regression parameter vector and ¢(z;) is a nonlinear feature mapping
function.

In fact we can not observe t;’s but the observed variable, y; = min(¢;,¢;) and 6; =
I(t; < ¢;), where I(.y denotes the indicator function and ¢; is the censoring variable cor-
responding to x; for ¢ = 1,2,--- ,n. ¢;’s are assumed to be independently distributed with
unknown survival distribution functions G.

In most practical cases G is not known and needs to be estimated by the Kaplan-Meier
(1958) estimator or its variation. The problem considered here is that of the estimation
of m(x;, z;) based on (d1,y1,21,,21),* » (On, Yn, Tn, 2n). Koul et al. (1981) defined new
observable responses y; as y; = u;y; with

(3.2)

and showed y; has the same mean as ¢; and thus follows the same linear model as ¢; does.
Here, G, the Kaplan-Meier estimates (Kaplan and Meier, 1958) of survival distribution
function G of ¢;’s can be obtained as,

N )
~ n—1
GW) = Ly <y <W> Y=< Y (3.3)

0 otherwise

where (y(;),03;)) is (yi,d;) ordered on y; for i = 1,2,--- ,n. Zhou (1992) proposed M-
estimator of the regression parameter with a quadratic loss function.

We consider the similar weighting scheme as Zhou (1992) replacing the optimal problem
of SVM (2.1) by

. 1 !/ - *
min sw w—i—C;ui(fi +&7) (3.4)
over {w, b, 3} subject to
yi —b—Bx; —w'e(z;) <&,
b+ B'w; +w'o(zi) —yi <&

where u; = 6;/(G(y;)) is the weight proposed by Koul et al. (1981) imposed on the i th
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observation. Thus, we can construct Lagrangian function as follows:

n

L= %’w’w +OY & +&) =D il —yi + b+ Ba; + w'(2:)) (3.5)
1=1 i=1

n

~San(E by —b— B - w'o(z) — 3 (& + i)

i=1 i=1

Here, (o, af)’s are Lagrange multipliers. Taking partial derivatives of Lagrangian function
(3.5) with regard to the primal variables (w, b, 3, é(*)), we have

w=Y(oi — a})(=1)"

i=1 %

(; — ) =0, (3.6)
=1
Z(ai —a )z, =0, ;,a; €[0,u;C].
i=1
From the equation (3.6), we have a; = 0 and of = 0 if u; = 0. We rewrite Lagrangian
function (3.5) as follows:

1

L= ww+ c;ui(& +&) - ; aile+& —yi+b+ Bm +w'e(z))
- Zaf(e + &y —b—Br —wo(zi)) - Z (mi&i +ni &)
i€l i€l

where I, = {i = 1,--- ,nu; # 0}.
Thus we have the optimization problem with uncensored data as follows:

max_% > (ai—af)(ay — a5)K (20, 7)) + ) (ai = a})y; (3.7)

i,j€ls i€l

with constraints

D (i —a))=0,> (a; — )} = 0,05,0; € [0,u;C]. (3.8)

i€ls i€ls

The estimator of the regression function given the input vector & and z are obtained as
follows:

m(,z) =b+ Bz + K(z,2) (@ —a), (3.9)

where K(z, z) is the kernel function constructed with z; fori =1,--- n.
Here b and 3 are obtained via Kuhn-Tucker conditions (Kuhn and Tucker, 1951) such as,

b , -1 .
5)= (XSU X) Xoo (o0 — K(2e0,2)(@ — &%), (3.10)
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where Iy, = {i = 1,--- ,nlu; # 0,0 < &; < w;C,0 < &F < u;C}, y,, consists of y;’s with
1 € Iy, 2z consists of z;’s with ¢ € I, and X, consists of (1,x;)’s with i € I,. We can
see that I, ={i =1, - ,nly; — f(x;, z;) = 0}.

The functional structures of the semiparametric SVM with the censored data is charac-
terized by hyper-parameters, the regularization parameter C' and the kernel parameters. To
select the hyper-parameters, we define the cross validation (CV) function as follows:

1 A »
= ﬁZuﬂyi—m(wi,zi)( 9, (3.11)

where 6 is the set of parameters and m(x;, z;)("% is the regression function estimated
without i th observation. Since for each candidates of parameters, m(x;,z2;)"% for i =
1,---,n, should be evaluated, selecting parameters using CV function is computationally

formidable. If we assume that we can express m(x, z) as the linear product of the hat matrix
and y, GACV function can be written as follows by Yuan (2006):

ZZL L uilyi — m(xi, 2:)|

n — trace(H)

GACV()\) = : (3.12)

where m(x, z) = Hy with the (¢, j)th element h;; = 0m(x;, z;)/0y;.

From Li et al. (2007) we have that the trace of the hat matrix H equals to the sum of size
of set I, used in (3.10) since h;; = dm(x;, z;)/0y; = 1 for i € I,,. Thus we have GACV
function as follows;

GACV (A E ilys — m(xq, 2;)), 3.13
(A) Tsw) wily; — z;)| ( )
where ng, is the size of I,.

4. Semiparametric SVM with censored data using IRWLS
procedure

In this section we consider a differentiable objective function, then we can have faster
computing and easy derivation of generalized approximate cross validation (GACV) function.
To have the objective function differentiable, we use the modified 0-insensitive loss function
ps(+) which is attained by providing the differentiability at 0 by differing from the original
0-insensitive loss function in the small interval (—§, ) for sufficiently small § > 0,

ps(r) = —rI(r < —0) + %’I‘QI(—(S <r <o)+ rl(r>9). (4.1)

Now the problem (3.4) becomes obtaining (b, 3, &) to minimize

L, B,a) = iaK(zza—i—CZung i —b—xlB - K(z;,2)a) (4.2)

i=1
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Taking partial derivatives of (4.2) with regard to (b, 3, &) leads to the optimal values of
(b, 3, @) to be the solution to

0=1UWy, - 1UWzB+1UWKa+1UW1b (4.3)
0px1 =2’ UWy —2'UWzB — 2’ UVKa — 2’ UW1b
0nx1 = Ka — CKUWy + CKUWz8 + CKUW Ko + CKUW1b.

K = K(z,z), U is the diagonal matrix of non-zero w;’s and W is a diagonal matrix w;;,

i=1,--- ,n obtained from the derivative of the modified absolute loss function as
1 2 1
Wy = —fI(Ti < —(5) + 51(—6 <r, < 6) + fI(TZ‘ > (5)7 (44)
T T

where r;, =y, —b—x;8 — K(z;, 2)a.

The solution to the equations (4.3) cannot be obtained in a single step since W contains
(b, 3, ) therein. Thus we need to apply IRWLS procedure which starts with initialized
values (b, 89 () as follows:

1) Calculate W from (4.4) using r; = y;—b®) —x;8Y — K (2z;, z)a® 2) Obtain (b(+1), g+ q+1))
from

-1

b+ 1UW1, 1UWa,, 1VUWK 1'UW
gy | = | 2lUW1, @ .UWa,, . UWK = UW | y,. (4.5)
o+ KUW, KUWz,, KUWK +K/C KUW

3) Iterate steps until convergence.

The estimator of the regression function given the input vector  and z are obtained as
follows:

iz, z) = b+ Bz + K(z,2)o. (4.6)

To select the hyper-parameters, we define the cross validation (CV) function as follows:
CcV(0) = lzn: wips(yi — m(wi, z;) ") (4.7)
nZ:1 b b

where 6 is the set of hyper-parameters and m(mi,zi)(_i) is the regression function esti-
mated without an observation corresponding to w;. Since for each candidates of parameters,
m(x;, zi)(*i) should be evaluated, selecting parameters using CV function is computation-
ally formidable. By leaving-out-one lemma (Kimeldorf and Wahba, 1971),

(yi — m(ms, 20) ) = (g — m(s, 2:))
om(x;, z;)

L o (1)
Dy (yz m(wm zz) )

= m(z;) — m(m;, z) ) ~
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we have
(y; — m(x, 2) ) ~ m and m(x;, z;) = Sy, (4.8)
. om(x;, z;)
y;

where .S;_ is the ¢ th row of the hat matrix such that S(x,z) = (1,513 + Se3 + K Ss3), S13
=(1 X n) matrix, Sez =(p X n) matrix and S33 = (n X n) matrix, are submatrices of the
product of matrices in the right-hand side of (4.5),

-1

S13 1'Uw1l, 1UWe, 1UWK 1'UwW
Soz | = |2’ UW1, z2'UWe, 2’ UWK ' UW |. (4.9)
Sas KUW, KUWz, KUWK +K/C KUW

Using (4.8) the approximate cross validation (ACV) function can be obtained as follows,

1 yi —m(x;, z;|0 1 yi —m(x, z;|0
ACV(9) = - g Ui Ps # = E Ui Ps <H> , (4.10)
i=1 i=1

8m(mi, Zi) 1-— Sii
1 7Y
dyi

where s;; is the ¢ th diagonal element of the hat matrix S. By summing the weighted residuals
in (4.10) revised by (1 — tr(S)/n), GACV function can be then obtained as follows,

LY00  wips(yi — m(@i, z4]0))
GACV(0) = ey . (4.11)

5. Numerical studies

In this section we perform simulation studies to investigate the finite sample behavior
of semiparametric SVM regression for AFT model with a parametric component plus a
nonparametric one. We compare the performances of proposed methods - SVM1 (censored
semiparametric SVM) and SVM2 (censored semiparametric SVM using IRWLS procedure)
with Orbe et al. (2003) which uses the cubic spline method (Green and Silverman, 1994)
for the estimation of nonlinear part of the regression function.

We consider a semiparametric regression model with covariate vector (z,z) under 20%
or 40% censoring. For ¢ = 1,---,100, x;’s are equally spaced ranging from 0 to 1, and
z;’s are generated from a uniform distribution U(0,1). Also, ¢;’s are generated from a
normal distribution with mean b + fx; + sin(nz;) and variance 0.1. Censoring times ¢;’s
are generated from a uniform distribution U (0, ay), where the period a; is chosen for 40%
censoring proportion. With a; fixed at this value, the follow-up period as is chosen for 20%
censoring proportion by U(az,a; + az2). (b, ) is set to (1,1). When patients are accrued
with a Poisson distribution, a; denotes the accrual period, and as denotes the additional
follow-up period after the completion of patient accrual. In each example, 200 data sets of
{yi, i, 2,0;}, i =1,---,100 are randomly generated. The true regression functions of y vs.
x and y vs. z superimposed on the scatter plot of data points from one of 200 data sets with
20% censoring are shown in Figures 1. The true regression functions are 1+ Sz 4+ 2/7 and
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140.58 +sin(7z), respectively, when the nonlinear and linear parts are fixed at their means,
respectively. Thus, Figure 1 describes the true regression functions 1 + 2/7m + x (Left) and
1.5+sin(7z) (Right). Uncensored and censored data points are denoted by dots and circles,
respectively. In Figure 1 we can see that both covariate values  and z are correlated with
the regression function since the regression parameter § was set at 1 in the example.

X z

Figure 5.1 True regression functions (solid line) superimposed on the scatter plots of y vs. x (left) and y
vs. z (right) from one of 200 simulated data sets for the example (8 =1) with n=100 and 20% censoring.

We consider the semiparametric regression model:
t; :b+mz6+n(22)+6137’: ]-7 7100,

where (b, B) are regression parameters to be estimated and 7 is an unknown nonlinear func-
tion.

The optimal Lagrange multipliers and regression estimators (b, 3) can be obtained from
(3.7) to (3.10) for SVM1 and (4.5) for SVM2.

The estimated regression function given (x;, z;) by SVM1 and SVM2 is obtained respec-
tively, as

%

(i, ) = b+ 2B + K (2, 2) (@ — &),
and
m(xzi, z;) = b+ a8+ K(z;, 2)a,
where z = (21, , 2100)"-
The Gaussian kernel is utilized in this example, which is,

Z1 — %9 2
K(z1,29) = exp <(2)> .

g
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The regularization parameter C' and the kernel parameter ¢? are obtained by GACV
function (3.13) for SVM1 and (4.11) for SVM2. Mean squared error (MSE) is used for the
performance metric of the example,

MSE = zn:(b + B 4 sin(mz;) — mlxzy, 2))?,

=1

where m(z;, z;) is the estimated regression function for ¢ = 1,---,100. The averages of
MSEs for 20% censoring were obtained as 0.008, 0.012 and 0.049, respectively, by SVMI,
SVM2 and Orbe et al. (2003). For 40% censoring, 0.119, 0.009 and 0.169 were obtained,
respectively. We can see that proposed methods provide more accurate results than Orbe
et al. (2003) on this example.

6. Conclusions

This paper proposes semiparametric SVM methods for the AFT model to regress a sur-
vival variable on some covariates. The proposed methods use the Kaplan-Meier weights
in the objective function to account for censoring. Although we have not shown here, the
proposal can be used without heavy computations even under high-dimensional covariate
settings or with huge data set, since it takes over all advantages of SVM. An important issue
for SVM is model selection. To this end, we provide the GACV method for choosing the
hyper-parameters which affect the performance of the proposed approach. The simulation
studies indicate that the proposed methods provide accurate estimates for the parametric
and nonparametric components under various settings. The main advantages of the proposed
approach over many existing estimation methods for the AFT model are that regression es-
timators can be easily computed by softwares solving a quadratic programming or a linear
equation and that the proposed approach can be applied to the high dimensional covariate
case. These make it easier to apply the proposed approaches to the analysis of censored
data in practice.
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