• Title/Summary/Keyword: AFM tip

Search Result 164, Processing Time 0.028 seconds

Nano-wear Characteristics of Silicon Probe Tip for Probe Based Data Storage Technology (탐침형 정보저장 기술을 위한 실리콘 탐침의 나노 마멸 특성에 관한 연구)

  • 이용하;정구현;김대은;유진규;홍승범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.552-555
    • /
    • 2004
  • The reliability issue of the probe tip/recording media interface is one of the most crucial concerns in the Atomic Force Microscope (AFM)-based recording technology. In this work, the tribological characteristics of the probe/media interface were investigated by performing wear tests using an AFM. The ranges of applied normal load and sliding velocity for the wear test were 10 to 50nN and 2 to 20$\mu$m/s respectively. The damage of the probe tip was quantitatively as well as qualitatively characterized by Field Emission Scanning Probe Microscope (FESEM) analysis and calculated based on Archard s wear equation. It was shown that the wear coefficient of the probe tip was in the order of 10$^{-4}$ ~ 10$^{-3}$ , and significant contamination at the end of the probe tip was observed. Thus in order to implement the AFM-based recording technology, tribological optimization of the probe/media interface must be achieved.

  • PDF

Nano-scale Patterning of Al thin film on 4H-SiC using AFM tip Scratching (AFM Scratching 기법을 이용한 4H-SiC기판상의 Al 박막 초미세 패턴 형성 연구)

  • Ahn, Jung-Joon;Kim, Jae-Hyung;Park, Yea-Seul;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.351-351
    • /
    • 2010
  • Nanoscale patterning using an atomic force microscope tip induced scratching was systematically investigated in AI thin film on 4H-SiC. To identify the effects of the scratch parameters, including the tip loading force, scratch speed, and number of scratches, we varied each parameters and evaluated the major parameter which has intimate relationship with the scale of patterns. In this work, we present the successful demonstration of nano patterning of Al thin film on a 4H-SiC substrate using an AFM scratching and evaluated the scratch parameters on Al/4H-SiC.

  • PDF

Formation of Switching Zones in an AFM Tip/Ferroelectric Thin Film/BE System (AFM팁/강유전박막/전극 시스템에서의 스위칭 영역의 형성)

  • Kim, Sang-Joo;Shin, Joon-Ho;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.849-856
    • /
    • 2003
  • A three-dimensional constitutive model for polarization switching in ferroelectric materials is used to predict the formation of switching zones in an atomic force microscopy(AFM) tip/ferroelectric thin film/bottom electrode system via finite element simulation. Initially the ferrolectric film is poled upward and the bottom electrode is grounded. A strong dc field is imposed on a fixed point of the top surface of the film through the AFM tip. A small switching zone with downward polarization is nucleated and grows with time. It is found that initially the shape of the switched zone is that of a bulgy dagger, but later turn to the shape of a reversed cup with the lower part wider than the upper part. It can also be concluded that the size of switching zones increases with the period of applied electric potential. The present results are qualitatively consistent with experimental observations.

Vibration Analysis of AFM Microcantilevers Using an Equivalent Stiffness Element Model (등가강성요소 모델을 이용한 AFM 마이크로캔틸레버의 진동해석)

  • Han, Dong Hee;Kim, Il Kwang;Lee, Soo Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.461-466
    • /
    • 2015
  • Atomic force microscopy (AFM) is powerful tool for determining properties of samples based on interactions between the sample surface and an approaching probe tip. In this study, we modeled the interactions between the sample and the tip of the AFM microcantilever as a single nonlinear spring with an equivalent stiffness element and simulated the dynamic behaviors of the AFM microcantilevers using the finite element method (FEM) and ANSYS software. With the simulation results, we analyzed the complex dynamic responses of the AFM cantilever using proper orthogonal decomposition (POD). In addition, we compared the simulation and experimental results using the same method. Consequently, we suggest an effective method to express the interaction between the tip and sample, and we confirm that the influence of the higher order model due to the interaction between the tip and sample is increased.

Analysis and Control f Contact Mode AFM (접촉모드 AFM의 시스템 분석 및 제어)

  • 정회원;심종엽;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • Recently, scientists introduced a new type of microscope capable of investigating nonconducting surfaces in an atomic scale, which is called AFM (Atomic Force Microscope). It was an innovative attempt to overcome the limitation of STM (Scanning Tunnelling Microscope) which has been able to obtain the image of conducting surfaces. Surfaces of samples are imaged with atomic resolution. The AFM is an imaging tool or a profiler with unprecedented 3-D resolution for various surface types. The AFM technology, however, leaves a lot of room for improvement due to its delicate and fragile probing mechanism. One of the room for improvements is gap control between probe tip and sample surface. Distance between probe tip and sample surface must be kept in below one Angtrom in order to measure the sample surface in Angstrom resolution. In this paper, AFM system modeling, experimental system identification and control scheme based on system identification are performed and finally sample surface is measured by home-built AFM with such a control scheme.

  • PDF

A Study of Data Storage Device Utilizing AFM technology (AFM을 이용한 데이터 저장 소자 연구)

  • Choi Jung-Hwan;Park Kun-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.411-416
    • /
    • 2006
  • A new reading technology for the ultra-high density data storage device utilizing AFM technology was proposed and its experimental results were discussed in this paper. For the experiments, an about $2{\mu}m$ thick conductive polymer layer was spin-coated on the heavily doped n-type Si wafer and an about $0.1{\mu}m$ thick PMMA layer was also been spin-coated on it. After then, the $5{\times}5$ memory way was fabricated by making indents on the surface of the wafer with the heated AFM tip, and the data reading was performed by scanning the surface with the tip biased at 10 V and the measuring the current flowing out at the end of the tip. The experimental results clearly showed that the new data reading technology worked superbly. The current measured was about 0.92 pA at the cell with the indent, and it was not only below 0.31 pA at the cell without the indent, but also at the cell where the indent was erased.

A Study on Tribological Characteristics of Materials for MEMS/NEMS Using Chemically Modified AFM tip (AFM을 이용한 MEMS/NEMS 공정용 재료의 트라이볼로지 특성에 관한 연구)

  • Heo, Jung-Chul;Kim, Kwang-Seop;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.24 no.2
    • /
    • pp.63-71
    • /
    • 2008
  • Friction and adhesion tests were conducted to investigate tribological characteristics of materials for MEMS/NEMS using atomic force microscope (AFM). AFM Si tips were chemically modified with a self-assembled monolayer (SAM) derived from trichlorosilane like octadecyltrichlorosilane (OTS) and (1H, 1H, 2H, 2H-perfluorooctyl) trichlorosilane (FOTS), and various materials, such as Si, Al, Au, Cu, Ti and PMMA films, were prepared for the tests. SAMs were coated on Si wafer by dipping method prior to AFM tip to determine a proper dipping time. The proper dipping time was determined from the measurements of contact angle, surface energy and thickness of the SAMs. AFM tips were then coated with SAMs by using the same coating condition. Friction and adhesion forces between the AFM Si tip modified with SAM and MEMS/NEMS materials were measured. These forces were compared to those when AFM tip was uncoated. According to the results, after coating OTS and FOTS, the friction and adhesion forces on all materials used in the tests decreased; however, the effect of SAM on the reduction of friction and adhesion forces could be changed according to counterpart materials. OTS was the most effective to reduce the friction and adhesion forces when counterpart material was Cu film. In case of FOTS, friction and adhesion forces decreased the most effectively on Au films.

Localized Oxidation of (100) Silicon Surface by Pulsed Electrochemical Processes Based on AFM (AFM 기반 Pulse 를 이용한 전기화학적 가공)

  • Lee, Jeong-Min;Kim, Sun-Ho;Park, Jeong-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1631-1636
    • /
    • 2010
  • In this study, we demonstrate a nano-scale lithograph obtained on localized (100) silicon (p-type) surface using by modified AFM (Atomic force microscope) apparatuses and by adopting controlling methods. AFM-based experimental apparatuses are connected to a customized pulse generator that supplies electricity between the conductive tip and the silicon surface, while maintaining a constant humidity throughout the lithography process. The pulse durations are controlled according to various experimental conditions. The electrochemical reaction induced by the pulses occurs in the gap between the conductive tip and silicon surface and result in the formation of nanoscale oxide particles. Oxide particles with various heights and widths can be created by AFM surface modification; the size of the oxide particle depends on the pulse durations and the applied electrical conditions under a humid environment.

Absorption analysis of streptavidin-biotin complexes using AFM (AFM을 이용한 스트렙타비딘-바이오틴 단백질 복합체의 흡착 분석)

  • Park, Jee-Eun;Kim, Dong-Sun;Choi, Ho-Jin;Shin, Jang-Kyoo;Kim, Pan-Kyeom;Lim, Geun-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.237-244
    • /
    • 2006
  • Atomic force microscope (AFM) has become a common tool for the structural and physical studies of biological macromolecules, mainly because it provides the ability to perform experiments with samples in a buffer solution. In this study, structure of proteins and nucleic acids has been studied in their physiological environment that allows native intermolecular complexes to be formed. Cr and Au were deposited on p-Si (100) substrate by thermal evaporation method in sequence with the thickness of $200{\AA}$ and $500{\AA}$, respectively, since Au is adequate for immobilizing biomolecules by forming a self-assembled monolayer (SAM) with semiconductor-based biosensors. The SAM, streptavidin and biotin interacted each other with their specific binding energy and their adsorption was analyzed using the Bio-AFM both in a solution and under air environment. A silicon nitride tip was used as a contact tip of Bio-AFM measurement in a solution and an antimony doped silicon tip as a tapping tip under air environment. Actual morphology could also be obtained by 3-dimensional AFM images. The length and agglomerate size of biomolecules was measured in stages. Furthermore, $R_{a}$ (average of surface roughness) and $R_{ms}$ (mean square of surface roughness) and surface density for the adsorbed surface were also calculated from the AFM image.

Nanoscale Nonlinear Dynamics on AFM Microcantilevers (AFM 마이크로캔틸레버의 나노 비선형 동역학)

  • Lee, S.I.;Hong, S.H.;Lee, J.M.;Raman, A.;Howell, S.W.;Reifenberger, R.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1560-1565
    • /
    • 2003
  • Tapping mode atomic force microscopy (TM-AFM) utilizes the dynamic response of a resonating probe tip as it approaches and retracts from a sample to measure the topography and material properties of a nanostructure. We present recent results based on nonlinear dynamical systems theory, computational continuation techniques and detailed experiments that yield new perspectives and insight into AFM. A dynamic model including van der Waals and Derjaguin-Muller-Toporov (DMT) contact forces demonstrates that periodic solutions can be represented with respect to the approach distance and excitation frequency. Turning points on the surface lead to hysteretic amplitude jumps as the tip nears/retracts from the sample. Experiments are performed using a tapping mode tip on a graphite sample to verify the predictions.

  • PDF