• Title/Summary/Keyword: AFLP

Search Result 178, Processing Time 0.036 seconds

Combined Genome Mapping of RFLP-AFLP-SSR in Pepper

  • Lee, Je Min;Kim, Byung-Dong
    • Genomics & Informatics
    • /
    • v.1 no.2
    • /
    • pp.108-112
    • /
    • 2003
  • We have constructed a molecular linkage map of pepper (Capsicum spp.) in an interspecific $F_2$ population of 107 plants with 320 RFLP, 136 AFLP, and 46 SSR markers. The resulting linkage map consists of 15 linkage groups covering 1,720 cM with an average map distance of 3.7 cM between framework markers. Most RFLP markers ($80\%$) were pepper-derived clones and these markers were evenly distributed all over the genome. Genes for defense and biosynthesis of carotenoids and capsaicinoids were mapped on this linkage map. By using 30 primer combinations, AFLP markers were generated in the $F_2$ population. For development of SSR markers in Capsicum, microsatellites were isolated from two small-insert genomic libraries and the GenBank database. This combined map provides a starting point for high-resolution QTL analysis, gene isolation, and molecular breeding.

Genetic Diversity Estimation of the Rice Mutant Lines Induced by Sodium Azide

  • Shin, Young-Seop;Jeung, Ji-Ung
    • Korean Journal of Breeding Science
    • /
    • v.43 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • To investigate dose-effect of a chemical mutagen, sodium azide on a rice elite line, Suweon472, seed aliquots were treated with five different concentrations of sodium azide. The degree of mutation levels of each aizde concentration were estimated by using DNA fingerprinting techniques such as RAPD and AFLP. Some selected mutant lines ($M_4$) were also subjected for DNA fingerprinting to estimate their mutation levels by comparing the banding patterns of the wild type, Suweon 472. RAPD and AFLP fingerprinting patterns indicated that dose-effect of different azide concentrations was not clear. With allele description of detected AFLPs among favorable mutant lines, it was possible to discriminate each mutant line from others which have similar phenotypes and reactions against pathogens. AFLP fingerprinting patterns of waxy mutant lines, otherwise, were highly homogeneous as well as their phenotypic and agronomic characters.

A phytogeographical study of Sasa borealis populations based on AFLP analysis (AFLP 마커를 이용한 조릿대 개체군의 식물지리학적 연구)

  • Kim, Il Ryong;Yu, Dasom;Choi, Hong-Keun
    • Korean Journal of Plant Taxonomy
    • /
    • v.45 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • Sasa borealis (Hack.) Makino & Shibata is widely distributed in South Korea. With amplified fragment length polymorphism (AFLP) markers, we analyzed the genetic diversity of S. borealis to predict and measure the phytogeographical factors of these populations. Relatively high levels of genetic diversity (PPL = 37.2%, h = 0.143, I = 0.205) and genetic differentiation ($G_{ST}$ = 0.324, ${\theta}^B$ = 0.395) were confirmed in populations of S. borealis. Moreover, an analysis of molecular variance (AMOVA) showed that the rate of differentiation among the populations was 47.7%. The results showed that genetic diversity is inversely proportional to the latitude of the S. borealis populations, indicating that the distribution of S. borealis may have extended from lower to higher latitudes. This method of investigating the correlation between genetic diversity and latitude presents critical information for estimating changes in distributions and plant conservation due to climate change.

Diversity Analysis of Japonica Rice using MITE-transposon Display (MITE-AFLP를 이용한 자포니카 벼의 다양성 검정)

  • Hong Seong-Mi;Kwon Soo-Jin;Oh Chang-Sik;Wessler Susan R.;Ahn Sang-Nag
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.3
    • /
    • pp.259-268
    • /
    • 2006
  • Miniature inverted transposable elements (MITEs) are abundant genomic components in plant including rice. MITE-transposon display (MITE-TD) is an Amplified Fragment Length Polymorphism (AFLP)-related technique based on MITE sequence. In this study, we used the MITE-AFLP for the analysis of diversity and relation-ship of the 114 japonica accessions. Of the several MITEs, the mPing family was applied to detect polymorphisms based on PCR amplification. The BfaI adaptor primer and the specific primer derived from mPing terminal inverted repeat (TIR) region were used to PCR amplification of 114 accessions. Nine primer pairs produced a total of 160 polymorphic bands. PIC values of the polymorphic bands generated by nine primer pairs ranged from 0.269 (BfaI + ACT) to 0.426 (BfaI + T). Each accession revealed a distinct fingerprint with two primer combinations, BfaI + G and BfaI + C. Cluster analysis using marker-based genetic similarity classified 114 accessions into five groups. MITE-AFLP markers were genetically mapped using a population of 80 BILs (BC1F7) derived from a cross between the rice accessions, Milyang 23 and Hapcheonaengmi 3. Eight of the markers produced with the primer pair BfaI + 0 were mapped on chromosomes 1, 2, 4, 5, 7, and 9. Considering that one MITE-AFLP marker on chromosome 7 was tightly linked to the Rc gene, the MITE-AFLP markers will be useful for gene tagging and molecular cloning.

Genetic Variation of Foxtail Millet [Setaria italica (L.) P. Beauv.] Among Accessions Collected From Korea Revealed by AFLP Markers (AFLP 분자마커를 이용한 우리나라에서 수집한 조 계통들의 유전적 다양성)

  • Kim, Eun-Ji;Sa, Kyu-Jin;Lee, Ju-Kyong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.4
    • /
    • pp.322-328
    • /
    • 2011
  • AFLP markers were employed to detect genetic diversity and genetic relationship among 26 accessions of foxtail millet collected from Korea. Analysis of 26 accessions of foxtail millet with nine AFLP primer set combinations detected a total of 170 bands, of which 145 (85.3%) showed polymorphic at the species level. The phenotypic diversity (Hs) calculated for the nine primer combinations ranged from 1.84 to 6.8, with an average of 3.85. The average phenotypic diversity values were 3.39 and 2.99 for accessions collected from Gangwon province (Group 1), and accessions collected from the other areas including Gyeonggi province (Group 2), respectively. In the cluster analysis of 26 accessions, two major groups were recognized at 73% genetic similarity. Group I includes 13 accessions, which were collected in Gangwon province, and 1 accession, which was collected in Gyeonggi province, with genetic similarity of 76.8%. Group II includes two accessions, which were collected in Gangwon province, and 10 accessions, which were collected in the other areas with genetic similarity of 78.9%. The presenting data on the assessment of genetic diversity and genetic relationships among Korean accessions of foxtail millet will be helpful for efficient collection or conservation strategy of foxtail millet germplasm in Korea.

Validity Test for Molecular Markers Associated with Resistance to Phytophthora Root Rot in Chili Pepper (Capsicum annuum L.) (고추의 역병 저항성과 연관된 분자표지의 효용성 검정)

  • Lee, Won-Phil;Lee, Jun-Dae;Han, Jung-Heon;Kang, Byoung-Cheorl;Yoon, Jae-Bok
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.64-72
    • /
    • 2012
  • Phytophthora root rot has been causing a serious yield loss in pepper production. Since 2004, the year in which commercial cultivars resistant to the disease were firstly commercialized, it has been necessary to introduce the resistance into domestic pepper cultivars for dried red pepper. Therefore, developing molecular markers linked to the resistance is required for an accurate selection of resistant plants and increasing breeding efficiency. Until now, several markers associated with the major dominant gene resistant to Phytophthora root rot have been reported but they have some serious limitations for their usage. In this study, we aimed to develop molecular markers linked to the major dominant gene that can be used for almost of all genetic resources resistant to Phytophthora root rot. Two segregating $F_2$ populations derived from a 'Subicho' ${\times}$ 'CM334' combination and a commercial cultivar 'Dokyacheongcheong' were used to develop molecular markers associated with the resistance. After screening 1,024 AFLP primer combinations with bulked segregant analysis, three AFLP (AFLP1, AFLP2, and AFLP3) markers were identified and converted into three CAPS markers (M1-CAPS, M2-CAPS, and M3-CAPS), respectively. Among them, M3-CAPS marker was further studied in ten resistants, fourteen susceptibles, five hybrids and 53 commercial cultivars. As a result, M3-CAPS marker was more fitted to identify Phytophthora resistance than previously reported P5-SNAP and Phyto5.2-SCAR markers. The result indicated that the M3-CAPS marker will be useful for resistance breeding to Phytophthora root rot in chili pepper.