• 제목/요약/키워드: AFLC-FNN

검색결과 6건 처리시간 0.026초

적응 FLC-FNN 제어기에 의한 IPMSM의 효율 최적화 제어 (Efficiency Optimization Control of IPMSM with Adaptive FLC-FNN Controller)

  • 최정식;고재섭;정동화
    • 전기학회논문지P
    • /
    • 제56권2호
    • /
    • pp.74-82
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning control fuzzy neural network (AFLC-FNN) controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC-FNN controller. Also, this paper proposes speed control of IPMSM using AFLC-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled AFLC-FNN controller, the operating characteristics controlled by efficiency optimization control are examined in detail.

AFLC-FNN 제어기에 의한 IPMSM의 효율 최적화 제어 (Efficiency Optimization Control of IPMSM with AFLC-FNN Controller)

  • 최정식;고재섭;이정호;김종관;박기태;박병상;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.146-148
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications. This paper proposes efficiency optimization control of IPMSM drive using AFLC-FNN(Adaptive Fuzzy Learning Control Fuzzy Neural Network)controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The optimal current can be decided according to the operating speed and the load conditions. This paper proposes speed control of IPMSM using AFLC-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled AFLC-FNN controller, the operating characteristics controlled by efficiency optimization control are examined in detail.

  • PDF

NN에 의한 IPMSM 드라이브의 효율최적화 제어기 개발 (Efficiency Optimization Controller Development of IPMSM Drive by NN)

  • 최정식;박기태;고재섭;박병상;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.94-96
    • /
    • 2007
  • This paper is proposed an efficiency optimization control algorithm for IPMSM which minimizes the copper and iron losses. The design of the speed controller based on adaptive fuzzy teaming control-fuzzy neural networks(AFLC-FNN) controller that is implemented using adaptive, fuzzy control and neural networks. The control performance of the AFLC-FNN controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

IPMSM 드라이브의 효율최적화를 위한 인공지능 제어기 개발 (Development of Artificial Intelligent Controller for Efficiency Optimization of IPMSM Drive)

  • 최정식;고재섭;박병상;박기태;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1007-1008
    • /
    • 2007
  • This paper is proposed an efficiency optimization control algorithm for IPMSM which minimizes the copper and iron losses. The design of the speed controller based on adaptive fuzzy learning control-fuzzy neural networks(AFLC-FNN) controller that is implemented using adaptive, fuzzy control and neural networks. The control performance of the AFLC-FNN controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

  • PDF

SynRM 드라이브의 고성능 제어를 위한 RFNN 제어기 설계 (Design of RFNN Controller for high performance Control of SynRM Drive)

  • 고재섭;정동화
    • 조명전기설비학회논문지
    • /
    • 제25권9호
    • /
    • pp.33-43
    • /
    • 2011
  • Since the fuzzy neural network(FNN) is universal approximators, the development of FNN control systems have also grown rapidly to deal with non-linearities and uncertainties. However, the major drawback of the existing FNNs is that their processor is limited to static problems due to their feedforward network structure. This paper proposes the recurrent FNN(RFNN) for high performance and robust control of SynRM. RFNN is applied to speed controller for SynRM drive and model reference adaptive fuzzy controller(MFC) that combine adaptive fuzzy learning controller(AFLC) and fuzzy logic control(FLC), is applied to current controller. Also, this paper proposes speed estimation algorithm using artificial neural network(ANN). The proposed method is analyzed and compared to conventional PI and FNN controller in various operating condition such as parameter variation, steady and transient states etc.

신경회로망을 이용한 IPMSM 드라이브의 효율최적화 제어기 개발 (Efficiency optimization control of IPMSM Drive using Neural Network)

  • 최정식;박기태;고재섭;박병상;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.322-327
    • /
    • 2007
  • This paper is proposed an efficiency optimization control algorithm for IPMSM which minimizes the copper and iron losses. The design of the speed controller based on adaptive fuzzy learning control-fuzzy neural networks(ABLC-FNN) controller that is implemented using adaptive, fuzzy control and neural networks. The control performance of the AFLC-FNN controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

  • PDF