• Title/Summary/Keyword: AESA Radar

Search Result 45, Processing Time 0.017 seconds

Analysis of Domestic and Foreign Military UAV Development Trends and Suggestions for Countermeasures Against North Korea UAVs (국내외 군사용 무인기 개발 동향 분석 및 북한 무인기 대응 방안 제언)

  • Kim, Gyou-Beom;Cho, In-Je;Seo, Il-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.97-105
    • /
    • 2021
  • Countries such as the United States, Russia, and Europe are developing and operating UAVs for various purposes, including stealth UAVs. North Korea is also operating unmanned aerial vehicles, and it is presumed that it is continuously flying south of the demarcation line to obtain information on the national security zone, but it is difficult to detect and neutralize it effectively. Therefore, this paper analyzed the military UAV development trends and military radar specifications in Western countries such as the United States and communist countries such as Russia, China, and North Korea through literature research. In addition, based on the investigation of the AESA radar-based UAV response system in the country, not only general responses but also countermeasures such as direct strike and electromagnetic pulses to North Korean UAVs that cannot be jammed were suggested.

QoS-aware Fast Wakeup and Connection Mechanism on Broadcasting Convergence Network (방송통신 융합망에서 QoS 향상을 위한 Fast Wakeup and Connection 기술)

  • Kim, Moon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.402-412
    • /
    • 2017
  • The convergence of broadcasting and telecommunication technologies is a key issue of the ubiquitous networks. So this paper offers the convergence of integrated telecommunication networks and broadcasting system, Advanced Terrestrial Digital Multimedia Broadcasting (AT-DMB), and the interconnection of them via the Media Independent Information Server/Service (MIIS). Then, this paper proposes the fast wakeup and connection mechanism with concepts for improving QoS and energy efficiency simultaneously. In the proposed convergence network, our mechanism places the key on the minimization of both the incoming service delay destined to a turned-off interface by using the broadcasting network and the additional energy consumption. This paper further evaluates the performance of proposed mechanism through the numerical and experimental analysis and has confirmed the decrease of both service delay and energy consumption.

3D LIDAR Based Vehicle Localization Using Synthetic Reflectivity Map for Road and Wall in Tunnel

  • Im, Jun-Hyuck;Im, Sung-Hyuck;Song, Jong-Hwa;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.159-166
    • /
    • 2017
  • The position of autonomous driving vehicle is basically acquired through the global positioning system (GPS). However, GPS signals cannot be received in tunnels. Due to this limitation, localization of autonomous driving vehicles can be made through sensors mounted on them. In particular, a 3D Light Detection and Ranging (LIDAR) system is used for longitudinal position error correction. Few feature points and structures that can be used for localization of vehicles are available in tunnels. Since lanes in the road are normally marked by solid line, it cannot be used to recognize a longitudinal position. In addition, only a small number of structures that are separated from the tunnel walls such as sign boards or jet fans are available. Thus, it is necessary to extract usable information from tunnels to recognize a longitudinal position. In this paper, fire hydrants and evacuation guide lights attached at both sides of tunnel walls were used to recognize a longitudinal position. These structures have highly distinctive reflectivity from the surrounding walls, which can be distinguished using LIDAR reflectivity data. Furthermore, reflectivity information of tunnel walls was fused with the road surface reflectivity map to generate a synthetic reflectivity map. When the synthetic reflectivity map was used, localization of vehicles was able through correlation matching with the local maps generated from the current LIDAR data. The experiments were conducted at an expressway including Maseong Tunnel (approximately 1.5 km long). The experiment results showed that the root mean square (RMS) position errors in lateral and longitudinal directions were 0.19 m and 0.35 m, respectively, exhibiting precise localization accuracy.

Development of Thermal Performance Prediction for Large Planar Military Antenna with Multi-Cooling Channels (다중 냉각유로가 적용된 수랭식 군사용 대면적 안테나의 열성능 예측 기술)

  • YeRyun Lee;SungWook Jang;PilGyeong Choi;NohJin Kwak;JunJung Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2024
  • Large planar military antenna boasts a range of electrical components, including TRA(Transmit-Receive Assembly), signal processors, etc. which engage in computations and calculations. These processes generate a significant amount of heat, leading to unforeseen consequences for the equipment. To mitigate these adverse effects, it's imperative to implement a cooling system that can effectively reduce heat-related issues. Given the antenna's intricate nature and the multitude of components it houses, a two-step estimation process is necessary. The first step involves a comprehensive model calculation to determine the total flow characteristics, while the second step entails a thermal analysis of individual TRA set. In this study, we depicted an antenna set using simplified 3D models of its components, considering their material and thermal properties. The sequential analysis process facilitated the calculation of branched flow rates, providing insights into the individual TRA. This approach also allowed us to design a cooling system for the TRA set, assessing its thermal stability in high-temperature environments. To ensure the optimal performance of TRA, breaking down the analysis into stages based on the cooling system's structure can assist operators in predicting numerical results more effectively.

High Efficiency Active Phased Array Antenna Based on Substrate Integrated Waveguide (기판집적 도파관(SIW)을 기반으로 하는 고효율 능동 위상 배열안테나)

  • Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.227-247
    • /
    • 2015
  • An X-band $8{\times}16$ dual-polarized active phased array antenna system has been implemented based on the substrate integrated waveguide(SIW) technology having low propagation loss, complete EM shielding, and high power handling characteristics. Compared with the microstrip case, 1 dB less is the measured insertion loss(0.65 dB) of the 16-way SIW power distribution network and doubled(3 dB improved) is the measured radiation efficiency(73 %) of the SIW sub-array($1{\times}16$) antenna element. These significant improvements of the power division loss and the radiation efficiency using the SIW, save more than 30 % of the total power consumption, in the active phased array antenna systems, through substantial reduction of the maximum output power(P1 dB) of the high power amplifiers. Using the X-band $8{\times}16$ dual-polarized active phased array antenna system fabricated by the SIW technology, the main radiation beam has been steered by 0, 5, 9, and 18 degrees in the accuracy of 2 degree maximum deviation by simply generating the theoretical control vectors. Performing thermal cycle and vacuum tests, we have found that the SIW array antenna system be eligible for the space environment qualification. We expect that the high efficiency SIW array antenna system be very effective for high performance radar systems, massive MIMO for 5G mobile systems, and various millimeter-wave systems(60 GHz WPAN, 77 GHz automotive radars, high speed digital transmission systems).