• Title/Summary/Keyword: ADP-ribosylation factor (ARF)

Search Result 5, Processing Time 0.044 seconds

Cloning and characterization of ADP-ribosylation factor 1b from the olive flounder Paralichthys olivaceus

  • Son, So-Hee;Jang, Jin-Hyeon;Jo, Hyeon-Kyeong;Chung, Joon-Ki;Lee, Hyung-Ho
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.10.1-10.7
    • /
    • 2017
  • Small GTPases are well known as one of the signal transduction factors of immune systems. The ADP-ribosylation factors (ARFs) can be classified into three groups based on the peptide sequence, protein molecular weight, gene structure, and phylogenetic analysis. ARF1 recruits coat proteins to the Golgi membranes when it is bound to GTP. The class I duplicated ARF gene was cloned and characterized from the olive flounder (Paralichthys olivaceus) for this study. PoARF1b contains the GTP-binding motif and the switch 1 and 2 regions. PoARF1b and PoARF1b mutants were transfected into a Hirame natural embryo cell to determine the distribution of its GDP/GTP-bound state; consequently, it was confirmed that PoARF1b associates with the Golgi body when it is in a GTP-binding form. The results of the qPCR-described PoARF1b were expressed for all of the P. olivaceus tissues. The authors plan to study the gene expression patterns of PoARF1b in terms of immunity challenges.

Characterization of ERp29 and ADP-Ribosylation Factor 5 Interaction (ERp29와 ADP-ribosylation factor 5의 결합특성)

  • Kwon, Ki-Sang;Seog, Dae-Hyun;Kim, Seung-Whan;Yu, Kweon;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.613-615
    • /
    • 2011
  • ERp29 is a endoplasmic reticulum (ER) lumenal resident protein that shows sequence similarity to the protein disulfide isomerase family. Its biological function is thought to play a role in the processing of secretory proteins within the ER, possibly by participating in the folding of proteins in the ER. Although some data on ERp29 have been reported, its normal functions are still unclear. To gain insights into the function of ERp29, we identified ARF5 protein as a protein that interacts with ERp29 using yeast two-hybrid screening and GST pull-down assay. Interaction between ERp29 and ARF5 was detected under normal cell conditions but not under ER stress conditions. This result may provide a clue for understanding ERp29 biological functions.

Phospholipase D in Guinea Pig Lung Tissue Membrane is Regulated by Cytosolic ARF Proteins

  • Chung, Yean-Jun;Jeong, Jin-Rak;Lee, Byung-Chul;Kim, Ji-Young;Park, Young-In;Ro, Jai-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.897-905
    • /
    • 2003
  • Phospholipase D (PLD) and ADP-ribosylation factor (ARF) were partially purified on a series of column chromatography, and their biochemical properties were characterized to understand the regulatory mechanism of PLD activation by ARF protein in the antigen-induced immune responses in guinea pigs. Heparin Sepharose and high-Q Sepharose column chromatographies were used for the purification of PLD, and Sephadex G-25, DEAE Sephacel, Source 15 PHE (HIC), Superdex-75, and Uno-Q column chromatographies were used for the purification of ARF. The purified PLD and ARF proteins were identified with anti-rabbit PLD- or ARF-specific antibodies, showing about 64 or 85 kDa for the molecular mass of PLD and 29 or 35 kDa for the sizes of ARF. Partial cDNA of ARF3 was cloned by RT-PCR in guinea pig lung tissue and its nucleotides and amino acids were sequenced. Guinea pig ARF3 showed 92% of nucleotides sequence identity and 100% of amino acid sequence homology with human ARF3. The ARF-regulated PLD activity was measured in the oleate or ARFs-containing mixed lipid vesicles. The purified and recombinant ARF (rARF) activities were assessed with the $GTP{\gamma}S$ binding assay. The PLD activity was induced by oleate in a dose-dependent manner. The purified ARF and recombinant ARF3 increased PLD activity in guinea pig lung tissues. These data show that the activity of membrane-bound PLD can be regulated by the cytosolic ARF proteins, suggesting that ARF proteins in guinea pig lung can act as a regulatory factor in controlling the PLD activity in allergic reaction.

Kinesin Superfamily Protein 5A (KIF5A) Binds to ArfGAP1, ADP-ribosylation Factor GTPase-activating Protein 1 (Kinesin Superfamily Protein 5A (KIF5A)와 ADP-ribosylation Factor GTPase-activating Protein 1 (ArfGAP1)의 결합)

  • Myoung Hun Kim;Se Young Pyo;Eun Joo Chung;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Mooseong Kim;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.333-338
    • /
    • 2024
  • Kinesin-1 is a heterotetrameric protein composed of two heavy chains (KHCs, also known as KIF5s) with a motor domain and two light chains (KLCs) without a motor domain. KIF5 has three subtypes, namely, KIF5A, KIF5B, and KIF5C, which share high amino acid homology except in their carboxy (C)-terminal region. KIF5A is responsible for transporting cargo within the cell. The adaptor proteins that bind to the C-terminal region of KIF5A mediate between kinesin-1 and cargo. However, the proteins regulating the intracellular cargo transport of kinesin-1 have not yet been fully identified. In this study, we identified ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1), which is involved in the intracellular trafficking of lysosomes, as a binding partner of KIF5A. KIF5A binds to the C-terminal region of ArfGAP1, and ArfGAP1 binds to the C-terminal region of KIF5A but does not interact with KIF5B, KIF5C, kinesin light chain 1 (KLC1), or KIF3A. When co-expressed in mammalian cells, ArfGAP1 co-localized with KIF5A and co-immunoprecipitated with KIF5A, KIF5B, and KLC1, but not with KIF3B. These results suggest that kinesin-1 may be regulated by ArfGAP1 in the intracellular transport of cargo.

Purification and Characterization of Proteins Inhibiting Phospholipase D Activity from Flounder (Paralichthys olivaceus) Brain (넙치 (Paralichthys olivaceus) 뇌로부터 phospholipase D 활성 억제 단백질의 정제 및 특성 규명)

  • SEO Jung-Soo;KIM Eun-Hi;HWAWG Eun-Young;KIM Nam Deuk;KIM Dong Sun;LEE Hyung-Ho;CHUNG Joon-Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.370-377
    • /
    • 2001
  • Flounder brain cytosol contains protein inhibitors that markedly inhibit the activity of partially purified brain membrane phospholipase D (PLD) which is dependent on phosphatidylinositol 4,5-bisphosphate ($PIP_2$) but insensitive to ADP-ribosylation factor (ARF), The PLD inhibitors have been enriched through several chromatographic steps and characterized with respect to size and mechanism of inhibition. Sequential chromatography of the brain cytosol yielded six inhibitor fractions, Two (IIA and IIB) of six inhibitor fractions showed the $PIP_2$-phosphatase activities. IIA was identified as synaptojanin, a nerve terminal protein that has known to be a member of the inositolpolyphosphate 5-phosphatase family, by immunoblot analysis. IIB showed an apparent molecular mass of 158 kDa by Superose 12 gel filtration chromatography and was immunologically distinct from synaptojanin. IIB hydrolyzed $PIP_2$, yielding only phosphatidylinositol phosphate (PIP) as product, suggesting that IIB hydrolyzes only one phosphate from either the 4- or 5-position of PI (4,5)$P_2$. These studies demonstrate that the existence of multiple $PIP_2$-phosphatases have been implicated in the negative regulation of $PIP_2$-dependent PLD activity within flounder brain.

  • PDF