• Title/Summary/Keyword: ADHESIVE PARAMETERS

Search Result 167, Processing Time 0.029 seconds

The Micro Structure Characteristics of Coating Layer on SM490B with HVOF Coating (HVOF용사 코팅한 SM490B 코팅층의 미시조직 특성)

  • Nam Ki-Soo;Cho Won-ik;Yoon Myung-Jin;Kim Byung-Moon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.80-86
    • /
    • 2005
  • High velocity oxy-fuel thermally sprayed coating of the WC-Co cermet material is a well-established process for modifying the surface properties of the structural components exposed to the corrosive and wear attacks. The hard WC phase in the coating resists to the wear while the soft metallic Co increases the adhesive and cohesive bonding properties. The coating properties deposited by the HVOF process are greatly dependent on the feedstock materials and processing parameters. The effects of the feedstock material and process coating parameters including the in-flight particle parameters and resultant coating microstructures were observed in this paper.

Effect of Measuring Parameters of Tensile Strength of Fiber-reinforced Composite Materials (섬유강화 복합재료의 인장강도 측정변수에 따른 영향)

  • Lee, Jae-Dong;Jin, Young-Ho;Kim, Min-Seok;Son, Hyun-Sik;Kwon, Dong-Jun
    • Journal of Adhesion and Interface
    • /
    • v.22 no.3
    • /
    • pp.85-90
    • /
    • 2021
  • Generally, the tensile strength of carbon fiber reinforced composite (CFRP) should be determined to produce this material. The tensile strength was performed based on ASTM D3039, and this test could cause the error by specimens and human. In this research, the CFRP tensile test was performed with different thickness of specimens and tap, adhesive for attaching tap, and pressure of jig to hold the specimens, while the test was performed based on ASTM D3039. The tensile stress and modulus exhibited differently with different specimen thicknesses, and the 1~1.5 mm thickness of the specimen was optimized. In the case of 0.28 MPa jig pressure, the slip or fracture at the clamping area of the specimen has not occurred, and specimens were fractured to the center section of the specimen. The adhesive to attach jig on specimen should be used to exhibit high adhesive stress. Experimental parameters could cause errors. It is expected to achieve an accurate tensile property evaluation of composite materials via improvements in adhesives, tabs, and jigs.

Application of Laser Surface Treatment Technique for Adhesive Bonding of Carbon Fiber Reinforced Composites (탄소복합재 접착공정을 위한 CFRP의 레이저 표면처리 기법의 적용)

  • Hwang, Mun-Young;Kang, Lae-Hyong;Huh, Mongyoung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.371-376
    • /
    • 2020
  • The adhesive strength can be improved through surface treatment. The most common method is to improve physical bonding by varying the surface conditions. This study presents the effect of laser surface treatment on the adhesive strength of CFRP. The surface roughness was patterned using a 1064 nm laser. The effects of the number of laser shots and the direction and length of the pattern on the adhesion of the CFRP/CFRP single joint were investigated through tensile tests. Tests according to ASTM D5868 were performed, and the bonding mechanism was determined by analyzing the damaged surface after a fracture. The optimized number of the laser shots and the optimized depth of the roughness should be required to increase the bonding strength on the CFRP surface. When considering the shear stress in the tensile direction, the roughness pattern in the direction of 45° that increases the length of the fracture path in the adhesive layer resulted in an increase of the adhesive strength. The surface treatment of the bonding surface using a laser is a suitable method to acquire a mechanical bonding mechanism and improve the bonding strength of the CFRP bonding joint. The study on the optimized laser process parameters is required for utilizing the benefits of laser surface processing.

Effect of Surface Properties on Adhesive Strength of Joint of Glass Fiber/Polyester Composite Panels (유리섬유/폴리에스테르 복합재료 패널 접합부의 접착강도에 관한 표면성질의 효과)

  • Nhut, Pham Thanh;Yum, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1591-1597
    • /
    • 2012
  • Adherend samples were made from unsaturated polyester and woven and mat glass fibers by the hand layup and vacuum methods. The mechanical properties of the adhesive, composite adherends, and terminal-joint and secondary-joint specimens were determined experimentally. Combinations of the experiment results and the bonding theory were used in this study. The maximum and average shear stresses were calculated based on the maximum tensile force and geometry parameters of the joint specimens. The results of the maximum and average shear stresses were compared and evaluated for six joints. The results showed that the grinding and grind/acetone joint had the highest strength among three types of terminal-joints. Similarly, the mat-mat and mat-woven joints had the highest strength among three types of secondary-joints with the same value. Conversely, no treatment and woven-woven bonding had very low strength. In each case, failure occurred always at two ends and then moved toward the middle area of the overlap length.

Effect of Functionalized Binary Silane Coupling Agents by Hydrolysis Reaction Rate on the Adhesion Properties of 2-Layer Flexible Copper Clad Laminate (이성분계 실란 커플링제의 가수분해속도 조절에 의한 2-FCCL의 접착특성 변화 연구)

  • Park, U-Joo;Park, Jin-Young;Kim, Jin-Young;Kim, Yong-Seok;Ryu, Jong-Ho;Won, Jong-Chan
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.302-307
    • /
    • 2011
  • The parameters of silanol formation reaction of organosilane including solvent type, solution concentration, pH and hydrolysis time influence the adhesion property of 2 layer flexible copper clad laminate (FCCL). Especially, the hydrolysis reaction time of silane coupling agent affects the formation of the silanol groups and their self-condensation to generate oilgomeric structure to enhance the surface treatment as an adhesive promoter. In our study, we prepared the binary silane coupling agents to control hydrolysis reaction rate and surface energy after treatment of silane coupling agents for increasing the adhesive property between a copper layer and a polyimide layer. The surface morphology of rolled copper foil, as a function of the contents of the coated binary silane coupling agent, was fully characterized. As fabricated 2-layer FCCL, we observed that adhesive properties were changed by hydrolysis rate and surface energy.

Experimental Debonding Failure Behaviors of Composite Skin-Stiffener Bonded Specimens (복합재료 스킨-보강재 접합 시편의 파손 특성에 대한 시험 연구)

  • Kim, Kwang-Soo;An, Jae-Mo;Jang, Young-Soon;Yi, Yeong-Moo
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.8-14
    • /
    • 2007
  • Debonding failure characteristics of the composite skin-stiffener specimens were experimentally investigated. The influences of bonding methods, types of stiffener shape and various secondary bonding parameters were evaluated. Present test results combined with the previous test results[1] showed that the failure displacement of the skin-stiffener specimens well evaluates the skin-stiffener debonding failure strength of the composite stiffened panels. The specimens with an open type stiffener had lower bending stiffness and larger failure displacement than those with a closed type stiffener. Secondary bonding and co-curing with adhesive had better failure strength than co-curing without adhesive film. Secondary bonded specimens failed by adhesive failure and co-cured specimens failed by delamination failure. As the bondline thickness was thinner, the skin-stiffener specimens had higher failure strength. The fillets had no influence on failure strength of the specimens. The influence of the surface roughness was shown according to types of stiffener shape.

Physicomechanical Properties Enhancement of Fast-Growing Wood Impregnated with Wood Vinegar Animal Adhesive

  • Efrida BASRI;SAEFUDIN;Mahdi MUBAROK;Wayan DARMAWAN;Jamal BALFAS;Yelin ADALINA;Yusuf Sudo HADI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.542-554
    • /
    • 2023
  • This study is a continuation of our previous work, which focused on the resistance of jabon wood to termites after impregnation with wood vinegar (WV) and animal-based adhesive (kak). This paper presents the physicomechanical properties of fast-growing jabon wood impregnated with kak at two concentrations (8% and 10%) in wood vinegar or water as a solvent with and without 4% borax. The physical properties of the impregnation solution, that is, viscosity, density, pH, and solid content, were evaluated according to SNI 06-4567-1998. Some physical parameters, such as weight percent gain (WPG), density, water uptake, anti-swelling efficiency (ASE), crystallinity, and mechanical properties, i.e., modulus of elasticity (MOE), modulus of rupture (MOR), and compression strength parallel to the grain (CS), of the impregnated wood were determined. Based on these results, wood impregnated using a mixture of kak in WV presented better physical (increased WPG, density, dimensional stability, and crystallinity) and mechanical (increased MOE/MOR and compression strength) properties than wood impregnated with a water solvent or untreated wood. The wood impregnated using WV and water solvent improved the physical and mechanical properties. The density of the wood increased by 44%-58% and 32%-47%, ASE radial-tangential increased by 38%-45%; 15%-28% after 24 h of water immersion, crystallinity increased by 59%-74%; 36%, MOE increased by 46%-57%; 28%-31%, MOR increased by 29%-34%; 14%-27%, and compression strength increased by 40%-76%; 38%-72% values to untreated wood.

Hydrocarbon Plasma of a Low-Pressure Arc Discharge for Deposition of Highly-Adhesive Hydrogenated DLC Films

  • Chun, Hui-Gon;Oskomov, Konstantin V.;Sochugov, Nikolay S.;Lee, Jing-Hyuk;You, Yong-Zoo;Cho, Tong-Yul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • Plasma generator based on non-self-sustained low-pressure arc discharge has been examined as a tool for deposition of highly-adhesive hydrogenated amorphous diamond-like carbon(DLC) films. Since the discharge is stable in wide range of gas pressures and currents, this plasma source makes possible to realize both plasma-immersion ion implantation(PIII) and plasma-immersion ion deposition(PIID) in a unified vacuum cycle. The plasma parameters were measured as functions of discharge current. Discharge and substrate bias voltage parameters have been determined for the PIII and PIID modes. For PIID it has been demonstrated that hard and well-adherent DLC coating are produced at 200-500 eV energies per deposited carbon atom. The growth rates of DLC films in this case are about 200-300 nm/h. It was also shown that short(∼60$\mu\textrm{s}$) high-voltage(> 1kV) substrate bias pulses are the most favorable for achieving high hardness and good adhesion of DLC, as well as for reducing of residual intrinsic stress are.

  • PDF

Metallization on Patterned Substrate (패턴된 기판에 금속 배선 형성)

  • 김남석;강탁;남승우;박용수
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.5
    • /
    • pp.309-319
    • /
    • 1995
  • The substrate patterned with the dry film has the cavity which has the $90^{\circ}$ wall angle. Electroplating Cu on this patterned substrate has the differrent shape history with the electrochemical parameters. By potential theory model, the reason of the variation of the shape change with the these parameters was investigated. The shape history could be explained by the current flow and the correlated area effects. By embedding the Ni layer between the Cu layers, shape history with the time was obtained experimentally and the results was compared with the numerical analysis by BEM. The adhesive Cr-Cu film in TAB application was etched with the various condition. The best condition for the etchant of the Cr-Cu film was found.

  • PDF

Effects of the geometrical parameters of the core on the mechanical behavior of sandwich honeycomb panel

  • Ahmed, Settet T.;Aguib, Salah;Toufik, Djedid;Noureddine, Chikh;Ahmed, Chellil
    • Coupled systems mechanics
    • /
    • v.8 no.6
    • /
    • pp.473-488
    • /
    • 2019
  • The present work is the study of mechanical behavior due to variation of the geometrical parameters in the core of the sandwich honeycomb panel. This study has allowed us to increase or decrease the strains and stresses of the panel, in changing the angle of alveolus, as explained and described below. In taking into consideration the results obtained previously to improve the mechanical properties and increase the adhesion of different parts of the panel, without changing the adhesive, we have conceived two new models, in increasing the contact surfaces in boundary of each part of the panel and giving a conical hexagonal shape in his corp.