• Title/Summary/Keyword: ADH1 promoter

Search Result 29, Processing Time 0.025 seconds

Expression of Inulinase Gene by Yeast Constitutive Promoters (효모의 구성적 Promoter들에 의한 Inulinase 유전자의 발현)

  • 김연희;남수완
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.153-159
    • /
    • 1999
  • To express constitutively the inulinase gene (INUl) of Kluyveromyces marxianus in Saccharomyces cerevisiae, three yeast promoters such as GAPDH, ADH1 and ENO1 were connected upstream of INUl. The resulting plasmids, pYIGP, pADHl-INU, and pENO-INU were introduced to S. cerevisiae SEY2102 host strain, respectively, and then each transformants were selected by staining of colonies on sucrose-agar plate. When the yeast transformants were cultivated on 2$\%$ dextrose media, the total expression levels of inulinase reached to 1.11 unit/mL, 0.88 unit/mL, and 0.69 unit/mL for respective GAPDH, ADH1, and ENO1 promoter systems. On 4% dextrose media, however, the inulinase activities were observed at 2.00 unit/mL for pYIGP, 0.71 unit/mL for pADH1-INU, and 1.40 unit/mL for pENO-INU. This result indicates that the constitutive expression of INUl was significantly affected by the initial concentration of dextrose and the promoter strength was in the order GAPDH, ENO1, and ADH1 promoter at high dextrose concentration. Taking into account the plasmid stability, however, it is suggested that the ENO1 promoter system is more suitable for the INU1 expression on high dextrose medium or in the fed-batch cultivation accumulating ethanol at high level.

  • PDF

Selection of Constitutive Promoter for Exoinulinase Production in Fed-Batch Culture of Recombinant Yeast (재조합 효모의 유가배양에서 Exoinulinase생산을 위한 Promoter의 선별)

  • 김이경;고지현;김연희;김성구;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.4
    • /
    • pp.206-211
    • /
    • 2001
  • In order to overexpress constitutively the Kluyveromyces marxianus exoinulinase gene (INUI) in Saccharomyces cerevisiae, four episomal expression systems employing GAPDH, ADHI, PGK and ENOI promoters were constructed as p YIGP aADHI -INU, pPGK-INU, and pENOI- INU plasmids respectively, When S cereviais transformants harboring each plasmid were batchwisely cultivated in the fermentor containing 5% glucose medium no significant differences in the cell growth are observed How- ever the experession level of exoinulinase and plasmid stability showed a strong dependency on the promoter employed. The expression levels of exoinulinase were about 1.70 unit/ml for GAPDH promoter 1.67 unit/ml for PGK promoter, 1.29 unit /ml for ADH1 promoter, and 0.80 unit/ml for ENOl promoter. The plasmid stabilites were maintaines above 80% in all experession systems. except the GAPDH promoter system of 55%, Based on the plas- mid stability and expression level of exoinulinase the ADHl and PGK promoter system were selected for the fed - batch culture to overproduce exoinulinase By the intermittent feeding of yeast extract and glucose, both promoter systems gave the cell concentration of about 30 g-dry cell weight/1 byt the maximal exoinulinase activity of 3.70 unit/ml and plasmid stability of 96% in the ADH1 promoter were higher than those (2.70 unit/ml, 80%) of PGK sys- tem Taking into account the plasmid stability and extended culture time the ADH1 promoter systems would be the most feasible expression systems for the constitutive overproduction of exoinulinase through high cell-density fed- batch cultures using non-selective rich medium.

  • PDF

Optimal Expression System for Production of Recombinant Neoagarobiose Hydrolyase in Saccharomyces cerevisiae (출아효모에서 재조합 neoagarobiose hydrolyase의 생산을 위한 최적 발현시스템)

  • Jung, Hye-Won;Kim, Yeon-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.662-666
    • /
    • 2019
  • In this study, the NABH558 gene expression system was constructed to efficiently produce neoagarobiose hydrolase (NABH) in Saccharomyces cerevisiae strain. The ADH1 and GAL10 promoters of the pAMFα-NABH and pGMFα-NABH plasmids were examined to determine the suitable promoter for the NABH558 gene expression, respectively. The effect of promoter and carbon sources on NABH558 gene expression was investigated by transforming each plasmid into the S. cerevisiae 2805 strain. The NABH activity in the 2805/pAMFα-NABH strain was 0.069 unit/ml/DCW in YPD medium, whereas that in the 2805/pGMFα-NABH strain was similar (0.02-0.027 unit/ml/DCW) irrespective of the medium composition. The higher NABH activity in the YPD medium was due to the increased NABH558 gene transcription. NABH produced in the recombinant strains could degrade agarose to galactose and AHG. This indicated that ADH1 promoter was a more optimal promoter for the expression of NABH558 gene than the GAL10 promoter. The NABH activity induced by the ADH1 promoter was about 3-fold higher than that induced by the GAL10 promoter.

Analysis of Heat Shock Promoters in Hansenula polymorpha: The TPS1 Promoter, a Novel Element for Heterologous Gene Expression

  • Amuel, Carsten;Gellissen, Gerd;Cor;Suckow, Manfred
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.247-252
    • /
    • 2000
  • The strength and regulatory characteristics of the heat-inducible HSA1, HSA2 and TPS1 promoters were compared with those of the well-established, carbon source-regulated FMD promoter in a Hansenula polymorpha-based host system in vivo. In addition, the Saccharomyces cerevisiae-derived ADH1 promoter was analysed. While ADH1 promoter showed to be of poor activity in the foreign host, the strength of the heat shock TPS1 promoter was found to exceed that of the FMD promoter, which at present is considered to be the strongest promoter for driving heterologous gene expression in H. polymorpha.

  • PDF

The use of SlAdh2 promoter as a novel fruit-specific promoter in transgenic tomato

  • Chung, Mi-Young;Naing, Aung Htay;Vrebalov, Julia;Shanmugam, Ashokraj;Lee, Do-Jin;Park, In Hwan;Kim, Chang Kil;Giovannon, James
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.172-178
    • /
    • 2020
  • Fruit-specific promoters play an important role in the improvement of traits, such as fruit quality through genetic engineering. In tomato, the development of fruit-specific promoters was previously reported, but less attention has been paid to the promoters involved in the fruit development stage. In this study, we characterized the gene expression patterns of tomato alcohol dehydrogenase 2 (SlAdh2) in various tissues of wild-type tomato (cv. Ailsa Craig). Our findings revealed that SlAdh2 expression levels were higher in the developing fruit than in the leaves, stems, and flowers. The ProSlAdh2 region, which is expressed at different stages of fruit development, was isolated from tomato genomic DNA. Following this, it was fused with a β-glucuronidase reporter gene (GUS) and introduced into wild-type tomato using Agrobacterium-mediated transformation to evaluate promoter activity in the various tissues of transgenic tomato. The ProSlAdh2:GUS promoter exhibited strong activity in the fruit and weak activity in the stems, but displayed undetectable activity in the leaves and flowers. Interestingly, the promoter was active from the appearance of the green fruit (1 cm in size) to the well-ripened stage in transgenic tomatoes, indicating its suitability for transgene expression during fruit development and ripening. Thus, our findings suggest that ProSlAdh2 may serve as a potential fruit-specific promoter for genetic-based improvement of tomato fruit quality.

Expression System for Optimal Production of Xylitol Dehydrogenase (XYL2) in Saccharomyces cerevisiae (출아효모에서 xylitol dehydrogenase (XYL2)의 최적 생산을 위한 발현 시스템 구축)

  • Jung, Hoe-Myung;Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1403-1409
    • /
    • 2017
  • In this study, the xylitol dehydrogenase (XYL2) gene was expressed in Saccharomyces cerevisiae as a host cell for ease of use in the degradation of lignocellulosic biomass (xylose). To select suitable expression systems for the S.XYL2 gene from S. cerevisiae and the P.XYL2 gene from Pichia stipitis, $pGMF{\alpha}-S.XYL2$, $pGMF{\alpha}-P.XYL2$, $pAMF{\alpha}-S.XYL2$ and $pAMF{\alpha}-P.XYL2$ plasmids with the GAL10 promoter and ADH1 promoter, respectively, were constructed. The mating factor ${\alpha}$ ($MF{\alpha}$) signal sequence was also connected to each promoter to allow secretion. Each plasmid was transformed into S. cerevisiae $SEY2102{\Delta}trp1$ strain and the xylitol dehydrogenase activity was investigated. The GAL10 promoter proved more suitable than the ADH1 promoter for expression of the XYL2 gene, and the xylitol dehydrogenase activity from P. stipitis was twice that from S. cerevisiae. The xylitol dehydrogenase showed $NAD^+$-dependent activity and about 77% of the recombinant xylitol dehydrogenase was secreted into the periplasmic space of the $SEY2102{\Delta}trp1/pGMF{\alpha}-P.XYL2$ strain. The xylitol dehydrogenase activity was increased by up to 41% when a glucose/xylose mixture was supplied as a carbon source, rather than glucose alone. The expression system and culture conditions optimized in this study resulted in large amounts of xylitol dehydrogenase using S. cerevisiae as the host strain, indicating the potential of this expression system for use in bioethanol production and industrial applications.

Expression of Nutritionally Well-balanced Protein, AmA1, in Saccharomyces cerevisiae

  • Kim, Tae-Geum;Kim, Ju;Kim, Dae-Hyuk;Yang, Moon-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.173-178
    • /
    • 2001
  • Food yeast, Saccharomyces cerevisiae, is a safe organism with a long history of use for the production of biomass rich in high quality proteins and vitamins. AmA1, a seed storage albumin from Amaranthus hypochondriacus, has a well-balanced amino acid composition and high levels of essential amino acids and offers the possibility of further improving food animal feed additives. In order to find an effective means of expressing AmA1 in yeast, the gene was cloned into an episomal shuttle vector. Four different promoters were tested: the glyceraldehyde-3-phosphate dehydrogenase promoter, galactose dehydrogenase 10 promoter, alcohol dehydrogenase II promoter, and a hybrid ADH2-GPD promoter. The recombinant AmA1 genes were then introduced into the yeast Saccharomyces cerevisiae 2805. Northern and Western blot analyses of the yeast under appropriate conditions revealed that AmA1 was expressed by all four promoters at varying levels. An enzyme-linked immunosorbent assay demonstrated that the amount of AmA1 protein in the recombinant yeast was 1.3-4.3% of the total soluble proteins. The highest expression level was obtained from the hybrid ADH2-GPD promoter.

  • PDF

Expression and Secretion of Foreign Proteins in Yeast Using the ADH1 Promoter and 97 K Killer Toxin Signal Sequence

  • Hong, Seok-Jong;Kang, Hyen-Sam
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.123-129
    • /
    • 1998
  • Foreign proteins, $endo-{\beta}-1,4-glucanase$ of Bacillus subtilis, preS1+S2 region of hepatitis B virus large surface antigen, human ${\beta}_2-adrenergic$ receptor ($h{\beta}_{2}AR$), and bovine growth hormone (bGH) were expressed in Saccharomyces cerevisiae and secreted into the medium. These proteins were expressed using the alcohol dehydrogenase I (ADH1) promoter of Saccharomyces cerevisiae and secreted by signal sequence of the 97 K killer toxin gene of doublestranded linear DNA plasmid (pGKL1) of S. cerevisiae. All these proteins underwent severe modifications; in particular, N-glycosylation in the case of $endo-{\beta}-1,4-glucanase$, $h{\beta}_2AR$, and preS1+S2. Seventy four percent of the expressed $endo-{\beta}-1,4-glucanase$ was secreted into the culture medium. Highly modified proteins were detected in the culture medium and in the cell. Expressed $h{\beta}_2AR$, which has seven transmembrane domains, remained in the cell. The degrees of secretion and modification and the states of proteins in the culture medium and in the cell were quite different. These results indicated that the nature of the protein has a critical role in its secretion and modifications.

  • PDF

Heterologous Expression of Human Ferritin H-chain and L-chain Genes in Saccharomyces cerevisiae (재조합 효모를 이용한 사람 H-Chain 교 L-Chain Ferritin의 생산)

  • 서향임;전은순;정윤조;김경숙
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.162-168
    • /
    • 2002
  • Human ferritin H- and L-chain genes(hfH and hfL) were cloned into the yeast shuttle vector YEp352 with various promoters, and the vectors constructed were used to transform Saccharomyces cerevisiae 2805. Three different promoters fused to hfH and hfL were used: galactokinase 1 (GAL1) promoter, glyceraldehyde-3-phosphate dehydrogenase(GPD) promoter and alcohol dehydrogenase 1(ADH1 ) promoter. SDS-polyacrylamide gel electrophoresis and Western blotting analyses displayed expression of the introduced hfH and hfL. In the production of both ferritin H and L subunits GAL1 promoter was more effective than GPD promoter or ADH1 promoter. Ferritin H and L subunits produced in S. cerevisiae were spontaneously assembled into its holoproteins as proven on native polyacrylamide gels. Both recombinant H and L-chain ferritins were catalytically active in forming iron core. When the cells were cultured in the medium containing 10 mM ferric citrate, the cell-associated concentration of iron was 174.9 $\mu\textrm{g}$ Per gram(dry cell weight) for the recombinant yeast YG-L and 148.8 $\mu\textrm{g}$ Per gram(dry cell weight) for the recombinant yeast YG-L but was 49.4 $\mu\textrm{g}$ Per gram(dry cell weight) in the wild type, indicating that the iron contents of yeast is improved by heterologous expression of human ferritin H-chain or L-chain genes.

Optimization for Production of Exo-β-1,3-glucanase (Laminarinase) from Aspergillus oryzae in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 Aspergillus oryzae 유래의 exo-β-1,3-glucanase (laminarinase)의 생산 최적화)

  • Kim, Min-Jung;Nam, Soo-Wan;Tamano, Koichi;Machida, Masayuki;Kim, Sung-Koo;Kim, Yeon-Hee
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.427-432
    • /
    • 2011
  • In this study, a EXGA gene code for exo-β-1,3-glucanase from Aspergillus oryzae was overexpressed and secretory produced in Saccharomyces cerevisiae. To overexpress the β-1,3-glucanase, pGInu-exgA and pAInu-exgA plasmids having GAL10 and ADH1 promoter, respectively, and exoinulinase signal sequence (Inu s.s) were constructed and introduced in S. cerevisiae SEY2102 and 2805. The recombinant β-1,3-glucanase was successfully expressed and secreted into the medium and the β--1,3-glucanase activity in 2102/pGInu-exgA and 2102/pAInu-exgA strain were 5.01 unit/mL and 4.09 unit/mL, respectively. In the 2805/pGInu-exgA and 2805/pAInu-exgA strain, the β-1,3-glucanase activity showed 3.23 unit/mL and 3.22 unit/mL, respectively. Secretory efficiency in each strain reached 95% to 98%. Subsequently, the recombinant β1,3-glucanase was used for ethanol production. Ethanol productivity in 2102/pAInu-exgA strain was 0.83 g/L when pre-treated Laminaria japonica which has initial reducing sugar of 1.4 g/L was used as substrate. It is assumed that the polysaccharides of Laminaria japonica was effectively saccharified by recombinant β-1,3-glucanase, resulting in increase of ethanol productivity. These results suggested that recombinant β-1,3-glucanase was efficiently overexpressed and secreted in S. cerevisiae SEY2102 as host strain by using ADH1 promoter-Inu s.s system.