Browse > Article
http://dx.doi.org/10.7841/ksbbj.2011.26.5.427

Optimization for Production of Exo-β-1,3-glucanase (Laminarinase) from Aspergillus oryzae in Saccharomyces cerevisiae  

Kim, Min-Jung (Department of Biomaterial Control (BK21 program))
Nam, Soo-Wan (Department of Biomaterial Control (BK21 program))
Tamano, Koichi (Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST))
Machida, Masayuki (Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST))
Kim, Sung-Koo (Department of Biotechnology and Bioengineering, Pukyong National University)
Kim, Yeon-Hee (Department of Biomaterial Control (BK21 program))
Publication Information
KSBB Journal / v.26, no.5, 2011 , pp. 427-432 More about this Journal
Abstract
In this study, a EXGA gene code for exo-β-1,3-glucanase from Aspergillus oryzae was overexpressed and secretory produced in Saccharomyces cerevisiae. To overexpress the β-1,3-glucanase, pGInu-exgA and pAInu-exgA plasmids having GAL10 and ADH1 promoter, respectively, and exoinulinase signal sequence (Inu s.s) were constructed and introduced in S. cerevisiae SEY2102 and 2805. The recombinant β-1,3-glucanase was successfully expressed and secreted into the medium and the β--1,3-glucanase activity in 2102/pGInu-exgA and 2102/pAInu-exgA strain were 5.01 unit/mL and 4.09 unit/mL, respectively. In the 2805/pGInu-exgA and 2805/pAInu-exgA strain, the β-1,3-glucanase activity showed 3.23 unit/mL and 3.22 unit/mL, respectively. Secretory efficiency in each strain reached 95% to 98%. Subsequently, the recombinant β1,3-glucanase was used for ethanol production. Ethanol productivity in 2102/pAInu-exgA strain was 0.83 g/L when pre-treated Laminaria japonica which has initial reducing sugar of 1.4 g/L was used as substrate. It is assumed that the polysaccharides of Laminaria japonica was effectively saccharified by recombinant β-1,3-glucanase, resulting in increase of ethanol productivity. These results suggested that recombinant β-1,3-glucanase was efficiently overexpressed and secreted in S. cerevisiae SEY2102 as host strain by using ADH1 promoter-Inu s.s system.
Keywords
β 1,3-glucanase; ADH1 promoter; GAL10 promoter; Aspergillus oryzae; Saccharomyces cerevisiae;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Lee, S. M., J. H. Kim, H. Y. Cho, H. Joo, and J. H. Lee (2009) Production of bio-ethanol from brown algae by physicochemical hydrolysis. J. Kor. Ind. Eng. Chem. 20: 517-521.
2 Pitson, S. M., R. J. Seviour, and B. M. McDougall (1993) Noncellulolytic fungal beta-glucanases: their physiology and regulation. Enzyme Microb. Technol. 15: 178-192.   DOI   ScienceOn
3 Guegen, Y., P. Chemardin, G. Janbon, A. Arnaud, and P. Galzy (1996) A very efficient $\beta$-glucosidase catalyst for the hydrolysis of flavor precursors of wines and fruit juices. J. Agric. Food Chem. 44: 2336-2340.   DOI   ScienceOn
4 Shoseyov, O., A. B. Bravdo, R. Ikan, and I. Chet (1990) Immobilized endo-$\beta$-glucosidase enriches flavor of wine and passion fruit juice. J. Agric. Food Chem. 27: 1973-1976.
5 Vasserot, Y., A. Arnaud, and P. Galzy (1995) Monoterpenyl glycosides in plants and their biotechnological transformation. Acta. Biotechnol. 15: 77-95.   DOI   ScienceOn
6 Gil, V. J., P. Manzanares, S. Salvador Genoves, S. Valles, and L. Gonzalez-Candelas (2005) Over-production of the major exoglucanase of Saccharomyces cerevisiae leads to an increase in the aroma of wine. Int. J. Food Microbiol. 103: 57-68.   DOI   ScienceOn
7 Kim, H., J. H. Ahn, J. M. Gorlach, C. Caprari, J. S. Scott-Craig, and J. D. Walton (2001) Mutational analysis of beta-glucanase genes from the plant-pathogenic fungus Cochliobolus carbonum. Mol. Plant Microbe Interact. 14: 1436-1443.   DOI   ScienceOn
8 Vazquez de Aldana, C. R., J. Correa, P. San Segundo, A. Bueno, A. R. Nebreda, E. Mendez, and F. del Rey (1991) Nucleotide sequence of the exo-1,3-beta-glucanase encoding gene, EXG1, of the yeast Saccharomyces cerevisiae. Gene 97: 173-182.   DOI   ScienceOn
9 van de Rhee, M. D., O. Mendes, M. W. Werten, H. J. Huizing, and H. Mooibroek (1996) Highly efficient homologous integration via tandem exo-beta-1,3-glucanase genes in the common mushroom. Agaricus bisporus. Curr. Genet. 30: 166-173.   DOI   ScienceOn
10 Jiang, B., A. F. Ram, J. Sheraton, F. M. Klis, and H. Bussey (1995) Regulation of cell wall beta-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription. Mol. Gen. Genet. 248: 260-269.   DOI   ScienceOn
11 Tamano, K., Y. Satoh, T. Ishii, Y. Terabayashi, S. Ohtaki, M. Sano, T. Takahashi, Y. Koyama, O. Mizutani, K. Abe, and M. Machida (2007) The $\beta$-1,3-exoglucanase gene exgA (exg1) of Aspergillus oryzae is required to catabolize extracellular glucan, and is induced in growth on a solid surface. Biosci. Biotechnol. Biochem. 71: 926-934.   DOI   ScienceOn
12 Lim, M. Y., J. W. Lee, J. H. Lee, Y. H. Kim, J. H. Seo, and S. W. Nam (2007) Secretory overexpression of clostridium endoglucanase A in Saccharomyces cerevisiae using GAL10 promoter and exoinulinase signal sequence. J. Life Science 17: 1248-1254.   DOI
13 Choi, G. W., H. W. Kang, Y. R. Kim, and B. W. Chung (2008) Comparison of Ethanol Fermentation by Saccharomyces cerevisiae CHY1077 and Zymomonas mobilis CHZ2501 from Starch Feedstocks. Kor. Chem. Eng. Res. 46: 977-982.
14 van Rensburg, P., W. H. van Zyl, and I. S. Pretorius (1997) Overexpression of the Saccharomyces cerevisiae exo-$\beta$-1,3-glucanase gene together with the Bacillus subtilis endo-$\beta$-1,3-1,4-glucanase gene and the Butyrivibrio fibrisolvens endo-$\beta$-1,4-glucanase gene in yeast. J. Biotechnol. 55: 43-53.   DOI   ScienceOn
15 Laloux, O., J. P. Cassart, J. Delcour, J. V. Beeumen and J. Vandenhaute (1991) Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS J. 289: 64-68.   DOI   ScienceOn
16 Jijakli, M. H. and P., Lepoivre (1998) Characterization of an exo-$\beta$-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytiscinerea on apples. Phytopathology 88: 335-343.   DOI   ScienceOn
17 Emr, S. D., R. Schekman, M. C. Flessel, and J. Thorner (1983) An MF$\alpha$1-Suc2 ($\alpha$-factor invertase) gene fusion for study of protein localization and gene expression in yeast. Proc. Natl. Acad. Sci. USA 80: 7080-7084.   DOI   ScienceOn
18 Park, H. S., H. C. Kim, D. H. Shin, J. K. Kim, and S. W. Nam (2005) Expression of Thermomonoepora fusca exoglucanase in Saccharomyces cerevisiae and its application to cellulose hydrolysis. Kor. J. Microbiol. Biotechnol. 33: 267-273.
19 Gietz R. D. and R. H. Schiestl (1995) Transforming yeast with DNA. Methods Mol. Cell. Biol. 5: 225-269.
20 Bara, M. T. F., A. L. Lima, and C. J. Ulhoa (2003) Purification and characterization of an exo-$\beta$-1,3-glucanase produced by Trichoderma asperellum. FEMS Microbiol. Lett. 219: 81-85.   DOI   ScienceOn
21 Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
22 Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277: 680-685.
23 Chung, B. H., S. W. Nam, B. M. Kim, and Y. H. Park (1996) Highlydfficient secretion of heterologous protein from Saccharomyces cerevisiae using inulinase signal peptide. Biotechnol. Bioeng. 49: 473-479.
24 Kang, H. A., S. W. Nam, K. S. Kwon, B. H. Chung, and M. H. Yu (1996) High-level secretion of human $\alpha$1-antitrypsin form Saccharomyces cerevisiae using inulinase signal sequence. J. Biotechnol. 48: 15-24.   DOI
25 Lim, C. K., Y. K. Kim, K. H. Kim, C. H. Kim, S. K. Rhee, and S. W. Nam (2004) Expression and secretion of Zymononas mobilis levansucrase in Saccharomyces cerevisiae. Kor. J. Life Sci. 14: 429-434.   DOI