• Title/Summary/Keyword: ACI model

Search Result 228, Processing Time 0.026 seconds

Strength Prediction of Interior Beam-column Joint using 3D Strut-Tie Model (3차원 스트럿-타이 모델을 이용한 내측 보-기둥 접합부의 강도 예측)

  • Yun, Young-Mook;Kim, Byung-Hun;Lee, Won-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.405-408
    • /
    • 2004
  • The current design procedures of ACI 318-02, CE3-FIP and NZS 3101 for interior beam-column joints do not provide engineers with a clear understanding of the physical behavior of beam-column joints. In this paper, the failure strengths of the interior beam-column joint specimens tested to failure were evaluated using the 3-dimensional strut-tie model approach, design criteria of ACI 318-02, ACI-ASCE committee 352 and Park and paulay, and softened strut-tie model approach. The analysis results obtained from the 3-dimensional strut-tie model approach were compared with those obtained from the other approaches, and the validity of the approach implementing a 3-dimensional strut-tie model was examined.

  • PDF

An Evaluation of ACI 349 Code for Shear Design of CIP Anchor (직매형 앵커기초의 전단설계를 위한 ACI 349 Code의 평가)

  • Jang Jung-Bum;Hwang Kyeong-Min;Suh Yong-Pyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.464-470
    • /
    • 2005
  • The numerical analysis is carried out to identify the influence of design factors to shear capacity of cast-in-place (CIP) anchor in ACI 349 Code that is available for the design of fastening system at Nuclear Power Plant (NPP) in this study. The MASA program is used to develop the numerical analysis model and the developed numerical analysis model is verified on a basis of the various test data of CIP anchor. Both $l/d_o$ and $c_1/l$ we considered as design factors. As a result, the variation of $l/d_o$ has no influence on the shear capacity of CIP anchor but $c_1/l$ has a large influence on the shear capacity of CIP anchor, Therefore, it is proved that ACI 349 Code may give a non-conservative results compared with real shear capacity of CIP anchor according to $c_1/l$.

  • PDF

Strut-Tie Model Approach Associated with 3-Dimensional Grid Elements for Design of Structural Concrete - (II) Validity Evaluation (3차원 격자요소를 활용한 콘크리트 구조부재의 스트럿-타이 모델 설계 방법 - (II) 타당성 평가)

  • Kim, Byung Hun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.437-446
    • /
    • 2014
  • In this study, the ultimate strengths of 13 slab-column joints and 51 torsional beams were evaluated to verify the validity of the strut-tie model approach presented in the companion paper. In addition, the design of the bridge pier subjected to multiple load combinations with longitudinal and lateral loads was conducted. The analysis results were compared with those by the provisions of BS 8110, ACI 318, and AASHTO-LRFD. The design results of the bridge pier were also compared with those by the provisions of ACI 318's sectional design method and AASHTO-LRFD's strut-tie model method.

Experimental Evaluation on Shear Strength of High-Strength RC Deep Beams (고강도 철근콘크리트 깊은 보의 전단 강도에 관한 실험평가)

  • Lee, Woo-Jin;Yoon, Seung-Joe;Kim, Seong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.689-696
    • /
    • 2003
  • Recently, Appendix A of ACI 318∼02 Code introduced the Strut-and-Tie Model(STM) procedure in shear design of deep flexural members. The STM procedure is widely used in the design of concrete regions where the distribution of longitudinal strains is significantly nonlinear, such as deep beams, beams with large openings, corbels, and dapped-end beams. Experimental study included five high-strength reinforced concrete deep beams with different detailing schemes for the horizontal and vertical reinforcement. The specimens were designed as simply supported beams subjected to concentrated loads on the top face and supported on the bottom face. At failure, all specimen exhibited primary diagonal crack running from the support region to the point load. Specimens which had mechanical anchorages(terminators) gives better representation of the load-carrying mechanism than the specimen had standard 90-degree anchorage at failure in deep flexural members. Based on the test results, shear design procedures contained in the ACI 318-99 Code, Appendix A of the ACI 318-02 Code, CSA A23.3-94 Code and CIRIA Guide-2 were evaluated. The Shear design of ACI 318-99 Code, Appendix A of the ACI 318-02 Code and CIRIA Guide-2 shown to be conservative predictions from 10% to 36% in the shear strength of the single-span deep beam which was tested. ACI 318-99 Code was the lowest standard deviation.

Required ties in continuous RC beams to resist progressive collapse by catenary action

  • Alrudaini, Thaer M.S.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.403-411
    • /
    • 2021
  • Ties are mandated by many design guidelines and codes to prevent the progressive collapse of buildings initiated by local failures. This study develops a model to estimate catenary/cable action capacity and the required ties in continuous reinforced concrete beams to bridge above the potential failed interior columns. The developed model is derived based on virtual work method and verified using test results presented in the literature. Also, parametric investigations are conducted to estimate the required ties in continuous reinforced concrete beams supporting one-way slab systems. A comparison is conducted between the estimated tie reinforcement using the developed model and that provided by satisfying the integrity provisions of the ACI 318-14 (2014) code. It is shown that the required tie reinforcements to prevent progressive collapse using the developed model are obviously larger than that provided by the integrity requirements of the ACI 318-14 (2014) code. It has been demonstrated that the increases in the demanded tie reinforcements over that provided by satisfying ACI 318-14 (2014) integrity provisions are varied between 1.01 and 1.46.

Comparison and Evaluation of Current Strut-and-Tie Design Provisions for Reinforced Concrete Deep Beams (철근콘크리트 깊은 보의 현행 스트럿-타이 설계기준에 대한 비교 및 평가)

  • Kim, Jin Woo;Hong, Sung-Gul;Lee, Young Hak;Kim, Heecheul;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.305-312
    • /
    • 2014
  • The current American Concrete Institute(ACI), Canadian Standard Associate(CSA) and CEB-FIP Model Code 2010 provisions on the shear strength of a simply supported deep beam suggest that deep beams should be designed using the strut-and-tie model. Although this is a useful methodology to design members in disturbed regions, the quality of the design is highly dependent on the truss model that designers create. However, Hong et al. derived the shear strength equations of reinforced concrete deep beams. This thesis investigates the validity of the current ACI, CSA and CEB-FIP code provisions on the shear strength of simply supported reinforced concrete deep beams by comparing them with the shear strength equations proposed by Hong et al. The comparison shows that all of these code provisions provide reasonable estimates on the shear strength of concrete deep beam members and the selection of an internal truss model plays an important role on the estimation of shear strength.

Effective compressive strength of strut in CFRP-strengthened reinforced concrete deep beams following ACI 318-11

  • Panjehpour, Mohammad;Ali, Abang Abdullah Abang;Voo, Yen Lei;Aznieta, Farah Nora
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.135-147
    • /
    • 2014
  • Strut-and-tie model (STM) has been recommended by many codes and standards as a rational model for discontinuity regions in structural members. STM has been adopted in ACI building code for analysis of reinforced concrete (RC) deep beams since 2002. However, STM recommended by ACI 318-11 is only applicable for analysis of ordinary RC deep beams. This paper aims to develop the STM for CFRP strengthened RC deep beams through the strut effectiveness factor recommended by ACI 318-11. Two sets of RC deep beams were cast and tested in this research. Each set consisted of six simply-supported specimens loaded in four-point bending. The first set had no CFRP strengthening while the second was strengthened by means of CFRP sheets using two-side wet lay-up system. Each set consisted of six RC deep beams with shear span to effective depth ratio of 0.75, 1.00, 1.25, 1.50, 1.75, and 2.00.The value of strut effectiveness factor recommended by ACI 318-11 is modified using a proposed empirical relationship in this research. The empirical relationship is established based on shear span to effective depth ratio.

A Study on Shear Strength Prediction for High-Strength Reinforced Concrete Deep Beams Using Strut-and-Tie Model (스트럿-타이 모델에 의한 고강도 철근콘크리트 깊은 보의 전단강도 예측에 관한 연구)

  • 이우진;서수연;윤승조;김성수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.918-923
    • /
    • 2003
  • Reinforced concrete deep beams are commonly used in many structural applications, including transfer girders, pile caps, foundation walls, and offshore structures. The existing design methods were developed and calibrated using normal strength concrete test results, and their applicability th HSC deep beams must be assessed. For the shear strength prediction of high-strength concrete(HSC) deep beams, this paper proposed Softened Strut-and-Tie Model(SSTM) considered HSC and bending moment effect. The shear strength predictions of the refined model, the formulas the ACI 318-02 Appendix A STM, and Eq. of ACI 318-99 11.8 are compared with the collected experimental data of 74 HSC deep beams with compressive strength in the range of 49-78MPa . It is shown the shear strength of deep beam calculated by those equations are conservative on comparing test results. The comparison shows that the performance of the proposed SSTM is better than the ACI Code approach for all the parameters under comparison. The parameters reviewed include concrete strength, the shear span-depth ratio, and the ratio of horizontal and vertical reinforcement. The proposed SSTM gave a mean predicted to experimental ratio of 0.99, 32 percent higher than ACI 318-02 Code, however with the low coefficient variation.

  • PDF

Prediction of Shear Strength in High-Strength Concrete Beams without Web Reinforcement Considering Size Effect (크기효과를 고려한 복부보강이 없는 고강도 콘크리트 보의 전단강도 예측식의 제안)

  • Bae, Young-Hoon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.820-828
    • /
    • 2003
  • Recent research has indicated that the current ACI shear provision provides unconservative predictions for large slender beams and beams with low level of longitudinal reinforcement, and conservative results for deep beams. To modify some problems of ACI shear provision, ultimate shear strength equation considering size effect and arch action to compute shear strength in high-strength concrete beams without stirrups is presented in this research. Three basic equations, namely size reduction factor, rho factor, and arch action factor, are derived from crack band model of fracture mechanics, analysis of previous some shear equations for longitudinal reinforcement ratio, and concrete strut described as linear prism in strut-tie model deep beams. Constants of basic equations are determined using statistical analysis of previous shear testing data. To verify proposed shear equation for each variable, effective depth, longitudinal reinforcement ratio, concrete compressive strength and shear span-to-depth ratio, about 300 experimental data are used and proposed shear equation is compared with ACI 318-99 code, CEB-FIP Model code, Kim &Park's equation and Zsutty's equation. The proposed shear equation is not only simpler than other shear equations, it is but also shown to be economical predictions and reasonable safety margin. Hence proposed shear strength equation is expected to be applied to practical shear design.