• Title/Summary/Keyword: ACI

Search Result 956, Processing Time 0.029 seconds

Compressive Strength Development Model for Concrete Cured by Microwave Heating Form (마이크로웨이브 발열거푸집으로 양생된 콘크리트의 압축강도발현 모델)

  • Koh, Tae-Hoon;Moon, Do-Young;Bae, Jung-Myung;Yoo, Jung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.669-676
    • /
    • 2015
  • Time dependent model for prediction of compressive strength development of concrete cured by microwave heating form was presented in this study. The presented model is similar to the equation which is given in ACI 209R-92 but the constants which is dependent on cement type and curing method in the presented model are modified by the regression analysis of the experimental data. Laboratory scale concrete specimens were cast and cured by the microwave heating form and drilled cores extracted from the specimens were fractured in compression. The measured core strengths are converted to standard core and in-situ strengths. These in-situ strengths are used for the regression.

Minimum Torsional Reinforcement Ratio of Reinforced Concrete Members for Safe Design (안전한 설계를 위한 철근콘크리트 부재의 최소비틀림철근비)

  • Kim, KangSu;Lee, DeuckHang;Park, Min-Kook;Lee, Jung-Yoon;Ju, HyunJin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.641-648
    • /
    • 2013
  • Current design codes regulate the minimum torsional reinforcement requirement for reinforced concrete members to prevent their brittle failure. The minimum torsional reinforcement ratio specified in the current national code and ACI318-11, however, have problems in the minimum longitudinal reinforcement ratio for torsion, the equilibrium condition in space truss model, and a marginal strength, etc. Thus, in order to overcome such shortcomings, this study presents a rational equation for minimum torsional reinforcement ratio that can provide a sufficient margin of safety in design. The minimum torsional reinforcement ratio proposed in this study was compared to the test results available in literature, and it was confirmed that it gave a proper margin of safety for all specimens studied in this paper.

Comparison of Development Length Equation of Bottom and Top GFRP Bars with Splitting Failure (쪼갬파괴된 GFRP 하부근과 상부근의 정착길이 산정식 비교)

  • Ha, Sang-Su;Yoon, Joon-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.141-149
    • /
    • 2009
  • The objective of this study was to propose a development length equation for bottom and top GFRP bars. Including the bottom and top GRPP bars, a total of 104 modified pullout tests were completed. The test variables were embedment length (15, 30, 45db), net cover thickness (0.5~2.0db), different GFRP bar types, and bar diameters (10, 13, 16mm). The average bond stresses were determined based on the modified pullout test results. Two variable linear regression analyses were performed on the results of the average bond stresses. Utilizing the 5% fractile concept, a conservative development length design equation was derived. The design equation of the development length for bottom and top GFRP bars was proposed and the design equation derived in this study was compared to the ACI 440.1R-06 committee equation.

Equivalent Plastic Hinge Length Model for Flexure-Governed RC Shear Walls (휨 항복형 철근콘크리트 전단벽의 등가소성힌지길이 모델)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • The present study proposes a simple equation to straightforwardly determine the potential plastic hinge length in boundary element of reinforced concrete shear walls. From the idealized curvature distribution along the shear wall length, a basic formula was derived as a function of yielding moment, maximum moment, and additional moment owing to diagonal tensile crack. Yielding moment and maximum moment capacities of shear wall were calculated on the basis of compatability of strain and equilibrium equation of internal forces. The development of a diagonal tensile crack at web was examined from the shear transfer capacity of concrete specified in ACI 318-11 provision and then the additional moment was calculated using the truss mechanism along the crack proposed by Park and Paulay. The moment capacities were simplified from an extensive parametric study; as a result, the equivalent plastic hinge length of shear walls could be formulated using indices of longitudinal tensile reinforcement at the boundary element, vertical reinforcement at web, and applied axial load. The proposed equation predicted accurately the measured plastic hinge length, providing that the mean and standard deviation of ratios between predictions and experiments are 1.019 and 0.102, respectively.

Evaluation of Seismic Strengthening Approach at the Boundary Elements of RC Walls using Prestressed Wire Rope Units (프리스트레스트 와이어로프를 사용한 RC 벽체의 단부 경계요소 내진보강 평가)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Byun, Hang-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • The present study examined the reversal cyclic flexural behavior of walls with jacket section approach for seismic strengthening through forming the boundary elements at both ends of the wall. The prestressed wire ropes were used for the lateral reinforcement to confine the boundary element of the wall. The main parameter investigated was the height of the jacket section for strengthening. The limit height of the strengthening jacket section was determined by comparing the moment distributions between the existing and strengthened walls. Test results showed that the examined jacket section approach was significantly effective in enhancing the flexural resistance of walls, indicating 46% higher stiffness at peak strength and 210% greater work damage indicator, compared with the flexural performance of the unstrengthened wall. The ductility of the strengthened walls was insignificantly affected by the height of the jacket section when the height is greater than twice the wall length. The flexural capacity of the strengthened walls was 22% higher than the predictions obtained using the equivalent stress block specified in ACI 318-14.

Flexural Behavior of Concrete Beams Reinforced with GFRP Bars (GFRP 보강근을 사용한 콘크리트 보의 휨파괴 거동)

  • Eo, Seok-Hong;Ha, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5318-5326
    • /
    • 2014
  • This paper presents the results of flexural test of concrete beams reinforced with GFRP and conventional steel reinforcement for comparison. The beams were tested under a static load to examine the effects of the reinforcement ratio and compressive strength of concrete on cracking, deflection, ultimate capacity, and modes of failure. The test results showed that the ultimate capacity of the GFRP-reinforced beams increased with increasing reinforcement ratio and concrete strength, showing a 41.3~51.6% increase compared to steel reinforced beams. The deflections at maximum loads of the GFRP reinforced beams were 4.1~6.3 times higher that of steel reinforced beams. The measured deflections of GFRP reinforced beams decreased approximately 31% compared to the theoretical predictions because the theoretical flexural stiffness was underestimated at the maximum loads. For the GFRP-reinforced beams, the ACI code 440 design method resulted in conservative flexural strength estimates.

Shear Resistance Evaluation of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 전단내력 평가)

  • Shin, Hyun-Seop;Park, Ki-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5290-5298
    • /
    • 2013
  • In order to apply a mechanical deck joint to the prefabricated steel grid composite decks, shear resistance of a joint composed of concrete shear key and high-tension bolt is experimentally evaluated by the push-out test. Shear resistance evaluated by the test is compared with resistance estimated by empirical and design equations based on the shear friction theory. Test results show that joint specimens bonded by epoxy have about 10% more shear resistance than specimens with strengthened shear key by steel plates, but in the case of specimens with strengthened shear key there is smaller resistance deviation than specimens bonded by epoxy. In comparison with resistances estimated by empirical and design equations, the deck joint can be safely designed. But because the existed shear resistance of deck joint is underestimated by the ACI-318, application of the LRFD design equation could be more reasonable.

Performance of 8SQAM System in a Nonlinearly Amplified SCPC-FDMA Channel Interference Environment (비선형 증폭 SCPC-FDMA 채널 간섭 환경에서 8SQAM 시스템의 성능)

  • 성봉훈;서종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7C
    • /
    • pp.678-687
    • /
    • 2003
  • 8SQAM(8-state Superposed Quadrature Amplitude Modulation) being a new modem technique for use in power and bandwidth limited digital communication system generates output signals which have a mか and continuous phase transition and a reduced envelope fluctuation by keeping correlation between amplitudes and phases of two subsequent symbols. Also, 8SQAM signal is free of inter-symbol interference(ISI), and has a compact power spectrum. Accordingly 8SQAM, as compared with a conventional 8PSK, is influenced a little by inter-modulation(IM), inter-symbol interference(ISI) and adjacent channel interference(ACI) in a nonlinearly amplified multi-channel(SCPC-FDMA) environment. In this paper, the performance of 8SQAM system in a nonlinearly amplified multi-channel interference environment is analyzed via computer simulation The simulation result shows that 8SQAM outperforms 8PSK with roll-off value of $\alpha$ = 0.3 by 2.7dB in CNR to maintain BER=1$\times$10$^{-4}$ when input back-off(IBO) of HPA is 1dB and channel space is 41.7% of the data bit rate(i.e., spectral efficiency = 2.40b/s/Hz).

An Experimental Study on Allowable Compressive Stress at Prestress Transfer in Pre-Tensioned Concrete Members (프리텐션된 콘크리트 부재의 프리스트레스 도입시 허용압축응력에 관한 실험적 연구)

  • Lee, Jeong Yeon;Lee, Deuck Hang;Kim, Kang Su;Park, Min Kook;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.9-17
    • /
    • 2012
  • In the previous research, allowable compressive stress was analyzed based on strength theory, in which primary effect factors on the allowable compressive stress, such as eccentricity ratio, section type, section size, prestress and self-weight moment, were considered. As its results, allowable compressive stress equations were proposed. As a series of the previous research, this paper presents an experimental study on the prestress at transfer of pre-tensioned members with different eccentricity ratios. The results shows that ACI318-08 and EC2-02 are unconservative for the members under low eccentricity ratios, and they are conservative for the members under high eccentricity ratios. Compared to the code provisions, the results indicates that the proposed equation reasonably well evaluates the allowable compressive stresses for those with different eccentricity ratios.

Maturity-Based Model for Concrete Compressive Strength with Different Supplementary Cementitious Materials (혼화재 치환율을 고려한 성숙도 기반의 콘크리트 압축강도 평가 모델)

  • Mun, Jae-Sung;Yang, Keun-Hyeok;Jeon, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.82-89
    • /
    • 2014
  • The purpose of this study is to propose a simple model to evaluate the compressive strength development of concrete with various supplementary cementitious materials (SCMs) and cured under different temperatures. For the generalization of the model, the ACI 209 parabola equation was modified based on the maturity function and then experimental constants A and B and 28-day compressive strength were determined from the regression analysis using a total of 265 data-sets compiled from the available literature. To verify the proposed model, concrete specimens classified into 3 Groups were prepared according to the SCM level as a partial replacement of cement and curing temperature. The analysis of existing data clearly revealed that the 28-day compressive strength decreases when the curing temperature is higher and/or lower than the reference curing temperature ($20^{\circ}C$). Furthermore, test results showed that the compressive strength development of concrete cured under $20^{\circ}C$ until an early age of 3 days was marginally affected by the curing temperature afterward. The proposed model accurately predicts the compressive strength development of concrete tested, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.00 and 0.08, respectively.