• Title/Summary/Keyword: ACI

Search Result 949, Processing Time 0.023 seconds

BGA Deveop Process Optimization for the Vertical Wet Equipment Using Taguchi Experiment (다구찌 방법을 이용한 BGA 현상 공정용 수직 습식 장비의 공정 최적화)

  • Ryu, Sun-Joong
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.310-317
    • /
    • 2009
  • Vertical wet equipment for the BGA develop process was newly developed substituted for conventional horizontal wet equipment. The benefits of vertical equipment are that the pattern damages generated by the collision between the patterns and transferring rollers can be eliminated because the direct contact between the equipment's transferring units and the soft dry film patterns does not occurs. Taguchi experiment was conducted to optimize the process characteristics for the vertical equipment. The experiment was organized as the smaller the better problem which includes adequate uncontrollable factor and controllable factors. The uncontrollable factors are the 4 sides of two panels which are loaded to the equipment at the same time. By the analysis of the experiment, temperature of the develop chemicals and develop spraying time are analyzed as the main controllable factors. Finally, line pattern's minimum width which is not damaged for the develop process was improved from $13.8{\mu}m$ for the horizontal equipment to $10.4{\mu}m$ for the vertical equipment. And dot pattern's minimum width is improved from $22.1{\mu}m$ to $16.3{\mu}m$.

Development of an Assumed Strain Shell Element for the Three Dimensional Construction Stage Analysis of PSC Bridge (PSC 교량의 3차원 시공 중 해석기법을 위한 가정된 변형률 쉘 요소 개발)

  • Kim, Ki-Du;Song, Sak Suthasupradit;Hwang, Hyun-Jin;Park, Jae-Gyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.108-117
    • /
    • 2010
  • The frame element is commonly used for construction stage analysis PSC bridges. However, the frame element does not show sufficient information in the curved PSC box bridges. For the case of curved PSC bridges, the deformations in the inner and outer web are different. In this case, the different jacking forces are required in the inner and outer webs. And it is impossible to calculate different jacking forces in the inner and outer webs if we use the frame element for construction stage analysis. In order to overcome this problem, the use of shell element is essential for a three-dimensional construction stage analysis of PSC bridges. In the following, the formulation of an assumed strain shell element and its application of PSC box girder bridge analysis are presented.

Seismic collapse risk of RC frames with irregular distributed masonry infills

  • Li, Yan-Wen;Yam, Michael C.H.;Cao, Ke
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.421-433
    • /
    • 2020
  • Masonry infills are normally considered as non-structural elements in design practice, therefore, the interaction between the bounding frame and the strength contribution of masonry infills is commonly ignored in the seismic analysis work of the RC frames. However, a number of typical RC frames with irregular distributed masonry infills have suffered from undesirable weak-story failure in major earthquakes, which indicates that ignoring the influence of masonry infills may cause great seismic collapse risk of RC frames. This paper presented the investigation on the risk of seismic collapse of RC frames with irregularly distributed masonry infills through a large number of nonlinear time history analyses (NTHAs). Based on the results of NTHAs, seismic fragility curves were developed for RC frames with various distribution patterns of masonry infills. It was found that the existence of masonry infills generally reduces the collapse risk of the RC frames under both frequent happened and very strong earthquakes, however, the severe irregular distribution of masonry infills, such as open ground story scenario, results in great risk of forming a weak story failure. The strong-column weak-beam (SCWB) ratio has been widely adopted in major seismic design codes to control the potential of weak story failures, where a SCWB ratio value about 1.2 is generally accepted as the lower limit. In this study, the effect of SCWB ratio on inter-story drift distribution was also parametrically investigated. It showed that improving the SCWB ratio of the RC frames with irregularly distributed masonry infills can reduce inter-story drift concentration index under earthquakes, therefore, prevent weak story failures. To achieve the same drift concentration index limit of the bare RC frame with SCWB ratio of about 1.2, which is specified in ACI318-14, the SCWB ratio of masonry-infilled RC frames should be no less than 1.5. For the open ground story scenario, this value can be as high as 1.8.

Statistical bias indicators for the long-term displacement of steel-concrete composite beams

  • Moreno, Julian A.;Tamayo, Jorge L.P.;Morsch, Inacio B.;Miranda, Marcela P.;Reginato, Lucas H.
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.379-397
    • /
    • 2019
  • Steel-concrete composite beams are widely employed in constructions and their performance at the serviceability stage is of concern among practitioners and design regulations. In this context, an accurate evaluation of long-term deflections via various rheological concrete models is needed. In this work, the performance and predict capability of some concrete creep and shrinkage models ACI, CEB, B3, FIB and GL2000 are ascertained, and compared by using statistical bias indicators. Ten steel-concrete composite beams with existing experimental and numerical results are then modeled for this purpose. The proposed modeling technique uses the finite element method, where the concrete slab and steel beam are modeled with shell finite elements. Concrete is considered as an aging viscoelastic material and cracking is treated with the common smeared approach. The results show that when the experimental ultimate shrinkage strain is used for calibration, all studied rheological models predict nearly similar deflections, which agree with the experimental data. In contrast, significance differences are encountered for some models, when none calibration is made prior to. A value between twenty and thirty times the cracking strain is recommended for the ultimate tensile strain in the tension stiffening model. Also, increasing the relative humidity and decreasing the ambient temperature can lead to a substantial reduction of slab cracking for beams under negative flexure. Finally, there is not a unique rheological model that clearly excels in all scenarios.

Optimal design for the reinforced concrete circular isolated footings

  • Lopez-Chavarria, Sandra;Luevanos-Rojas, Arnulfo;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo;Velazquez-Santillan, Francisco
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.273-294
    • /
    • 2019
  • In this paper is presented the minimum cost (optimal design) for reinforced concrete circular isolated footings based on an analytic model. This model considers a load and two moments in directions of the X and Y axes, and the pressure has a variation linear, these are the effects that act on the footing. The minimum cost (optimal design) and the Maple program are shown in Flowcharts. Two numerical experiments are shown to obtain the minimum cost design of the two materials that are used for a circular footing supporting an axial load and moments in two directions in accordance to the code of the ACI (American Concrete Institute), and it is compared against the current design (uniform pressure). Also, the same examples are developed through the normal procedure to verify the minimum cost (optimal design) presented in this document, i.e., the equations of moment, bending shear and punching shear are used to check the thickness, and after, the steel areas of the footing are obtained, and it is compared against the current design (uniform pressure). Results section show that the optimal design is more accurate and more economical than to any other model. Therefore, it is concluded that the optimized design model presented in this paper should be used to obtain the minimum cost design for the circular isolated footings.

Effect of spiral spacing on axial compressive behavior of square reinforced concrete filled steel tube (RCFST) columns

  • Qiao, Qiyun;Zhang, Wenwen;Mou, Ben;Cao, Wanlin
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.559-573
    • /
    • 2019
  • Spiral spacing effect on axial compressive behavior of reinforced concrete filled steel tube (RCFST) stub column is experimentally investigated in this paper. A total of twenty specimens including sixteen square RCFST columns and four benchmarked conventional square concrete filled steel tube (CFST) columns are fabricated and tested. Test variables include spiral spacing (spiral ratio) and concrete strength. The failure modes, load versus displacement curves, compressive rigidity, axial compressive strength, and ductility of the specimens are obtained and analyzed. Especially, the effect of spiral spacing on axial compressive strength and ductility is investigated and discussed in detail. Test results show that heavily arranged spirals considerably increase the ultimate compressive strength but lightly arranged spirals have no obvious effect on the ultimate strength. In practical design, the effect of spirals on RCFST column strength should be considered only when spirals are heavily arranged. Spiral spacing has a considerable effect on increasing the post-peak ductility of RCFST columns. Decreasing of the spiral spacing considerably increases the post-peak ductility of the RCFSTs. When the concrete strength increases, ultimate strength increases but the ductility decreases, due to the brittleness of the higher strength concrete. Arranging spirals, even with a rather small amount of spirals, is an economical and easy solution for improving the ductility of RCFST columns with high-strength concrete. Ultimate compressive strengths of the columns are calculated according to the codes EC4 (2004), GB 50936 (2014), AIJ (2008), and ACI 318 (2014). The ultimate strength of RCFST stub columns can be most precisely evaluated using standard GB 50936 (2014) considering the effect of spiral confinement on core concrete.

Experimental behavior of VHSC encased composite stub column under compression and end moment

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Mei, Liu;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.69-83
    • /
    • 2019
  • This paper investigates the structural behavior of very high strength concrete encased steel composite columns via combined experimental and analytical study. The experimental programme examines stub composite columns under pure compression and eccentric compression. The experimental results show that the high strength encased concrete composite column exhibits brittle post peak behavior and low ductility but has acceptable compressive resistance. The high strength concrete encased composite column subjected to early spalling and initial flexural cracking due to its brittle nature that may degrade the stiffness and ultimate resistance. The analytical study compares the current code methods (ACI 318, Eurocode 4, AISC 360 and Chinese JGJ 138) in predicting the compressive resistance of the high strength concrete encased composite columns to verify the accuracy. The plastic design resistance may not be fully achieved. A database including the concrete encased composite column under concentered and eccentric compression is established to verify the predictions using the proposed elastic, elastoplastic and plastic methods. Image-oriented intelligent recognition tool-based fiber element method is programmed to predict the load resistances. It is found that the plastic method can give an accurate prediction of the load resistance for the encased composite column using normal strength concrete (20-60 MPa) while the elastoplastic method provides reasonably conservative predictions for the encased composite column using high strength concrete (60-120 MPa).

Punching Shear Strength of Slab-Column Interior Connection Considering Anchorage Performance of Shear Reinforcements (전단보강재의 정착성능을 고려한 슬래브-기둥 내부접합부의 뚫림전단강도)

  • Jung, Hyung-Suk;Choi, Hyun-Ki;Chung, Joo-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Flat plate slab is cost-efficient structural system widely used in high rise building, apartment and parking garages. But flat plate-column connections are so weak against punching shear failure that it may cause collapse of overall structure. In this study, spiral type shear reinforcement which increases the shear strength and ductility of the plate-column connection and has good workability was proposed. And experimental test was performed to verify the punching shear capacity of spiral type shear reinforcement. The current code does not accurately estimate the punching shear strength of slab-column connection with shear reinforcement because slab is so slender that punching failure may occurred before shear reinforcement reached yield stress. Therefore modified equation of ACI code for punching shear strength was proposed base on finite element analysis using LUSAS program, and data analysis from CEB-FIP database.

Shake-table tests on moment-resisting frames by introducing engineered cementitious composite in plastic hinge length

  • Khan, Fasih A.;Khan, Sajjad W.;Shahzada, Khan;Ahmad, Naveed;Rizwan, Muhammad;Fahim, Muhammad;Rashid, Muhammad
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • This paper presents experimental studies on reinforced concrete moment resisting frames that have engineered cementitious composite (ECC) in plastic hinge length (PHL) of beam/column members and beam-column joints. A two-story frame structure reduced by a 1:3 scale was further tested through a shake-table (seismic simulator) using multiple levels of simulated earthquake motions. One model conformed to all the ACI-318 requirements for IMRF, whereas the second model used lower-strength concrete in the beam/column members outside PHL. The acceleration time history of the 1994 Northridge earthquake was selected and scaled to multiple levels for shake-table testing. This study reports the observed damage mechanism, lateral strength-displacement capacity curve, and the computed response parameters for each model. The tests verified that nonlinearity remained confined to beam/column ends, i.e., member joint interface. Calculated response modification factors were 11.6 and 9.6 for the code-conforming and concrete strength deficient models. Results show that the RC-ECC frame's performance in design-based and maximum considered earthquakes; without exceeding maximum permissible drift under design-base earthquake motions and not triggering any unstable mode of damage/failure under maximum considered earthquakes. This research also indicates that the introduction of ECC in PHL of the beam/column members' detailing may be relaxed for the IMRF structures.

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.