• Title/Summary/Keyword: ACETYLENE

Search Result 326, Processing Time 0.029 seconds

A Study on the Generating feature of Hydrogen Oxygen Gas Using Current Controlled Pulse Power Supply (전류제어형 펄스전원장치를 이용한 수산화 가스 발생 특성 연구)

  • Yang S. H.;Kang B. H.;Jun Y. S.;Mok H. S.;Choe G. H.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.257-262
    • /
    • 2002
  • Water-Electrolyzed gas is a mixed gas has the constant volume ratio 2 1 Hydrogen and Oxygen gained from electrolyzed water, and it has better characteristics in the field of economy, efficiency of energy, and environmental intimacy than acetylene gas and LPG used for existing gas welding equipment. So nowdays many studies of Water-Electrolyzed gas are progressed, and commercially used as a source of thermal energy for gas welding in the industry. For Water-Electrolyzed Source, it was used diode rectifier or SCR rectifier for get DC source. This method which is not looking to improve a source for impossible current control or voltage and limited control intervals. In this paper, it was relized and designed In source of pulse type for complementing existing - DC source type, also by experiment it was acquired producting characteristics of Hydrogen -Oxygen Gas through feature of source

  • PDF

The Relation between Emission Properties and Growth of Carbon nanotubes with dc bias by RF Plasma Enhanced Chemical Vapor Deposition

  • Choi, Sun-Hong;Han, Jae-Hee;Lee, Tae-Young;Yoo, Ji-Beom;Park, Chong-Yun;Yi, Whi-Kun;Yu, Se-Gi;Jung, Tae-Won;Lee, Jung-Hee;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.662-665
    • /
    • 2002
  • The growth of carbon nanotubes (CNTs) was carried out using ratio frequency plasma enhanced chemical vapor deposition (rf PECVD) system equipped with dc bias for the directional growth. Acetylene and ammonia gas were used as the carbon source and a catalyst. The relation between gas flow rate and dc bias on the growth of CNTs was investigated. We studied the relation between emission properties and the directionality of CNTs grown under different dc bias voltage.

  • PDF

불포화 토양내 유류성분의 포화도 평가를 위한 분배추적자의 활용 방안

  • Park Gi-Ho;Park Min-Ho;Sin Hang-Sik;Go Seok-O
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.20-28
    • /
    • 2006
  • Partitioning tracer tests were conducted to quantify the saturation degree of diesel and water in unsaturated soil, respectively. The use of partitioning tracers that partition into diesel, water, and air (i.e., three-phase partitioning), is in attractive alternative to traditional coring and analysis method. These gaseous partition tracers not global warming gas like CFC's are Butane, Acetylene, Ethylene, Methylene chloride, and Methane. The glass column packed with sandy soil was prepared, in which a three-phase system of air, water, and diesel was maintained. Conservative and partition gas tracers were injected into the columns and detected easily using a single GC detector(FID). For each tracer, a method of moments was used to estimate partition coefficient between water, diesel. and the air, respectively. The results from the column studies showed that the diesel/air tracer partition coefficient ranged from 8.2 to 868 and 9.2 for water/air. Saturation degree of diesel and water in the column, predicted by the partition coefficients obtained from tests, was underestimated up to 66% and 23% respectively.

  • PDF

Study on a cavity ring-down spectrometer with continuous wave laser sources (연속발진 레이저를 이용한 공동 광자감쇠 분광기 연구)

  • 유용심;한재원;김재완;이재용;이해웅
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.240-244
    • /
    • 1998
  • Cavity ring-down spectroscopy (CRDS) is a high-sensitive laser spectroscopic technique capable of measuring concentrations of trace gases. We have demonstrated a new design of the CRDS spectrometer with a continuous wave (CW) laser. The ring-dwon signal is produced through blocking the incident CW laser by scanning the cavity length fast toward off-resonance iwth PZT (piezoelectric transducer). We have also measured an absorption spectrum of acetylene overtone transitions near 570 nm at the pressure of 2700 Pa, and the minimum detectable absorption coefficient has been found to be about $3{\times}10^{-9}\cm^{-1}$.

  • PDF

Protective SiC Coating on Carbon Fibers by Low Pressure Chemical Vapor Deposition

  • Bae, Hyun Jeong;Kim, Baek Hyun;Kwon, Do-Kyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.702-707
    • /
    • 2013
  • High-quality ${\beta}$-silicon carbide (SiC) coatings are expected to prevent the oxidation degradation of carbon fibers in carbon fiber/silicon carbide (C/SiC) composites at high temperature. Uniform and dense ${\beta}$-SiC coatings were deposited on carbon fibers by low-pressure chemical vapor deposition (LP-CVD) using silane ($SiH_4$) and acetylene ($C_2H_2$) as source gases which were carried by hydrogen gas. SiC coating layers with nanometer scale microstructures were obtained by optimization of the processing parameters considering deposition mechanisms. The thickness and morphology of ${\beta}$-SiC coatings can be controlled by adjustment of the amount of source gas flow, the mean velocity of the gas flow, and deposition time. XRD and FE-SEM analyses showed that dense and crack-free ${\beta}$-SiC coating layers are crystallized in ${\beta}$-SiC structure with a thickness of around 2 micrometers depending on the processing parameters. The fine and dense microstructures with micrometer level thickness of the SiC coating layers are anticipated to effectively protect carbon fibers against the oxidation at high-temperatures.

Effects of Input Gases on the Growth Characteristics of Vertically Aligned Carbon Nanotubes in Plasma Enhanced Hot Filament Chemical Vapor Deposition

  • Han, Jae-Hee;Yang, Ji-Hun;Yang, Won-Suk;Yang, Cheol-Woong;Yoo, Ji-Beom;Park, Chong-Yun
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.2
    • /
    • pp.55-60
    • /
    • 2000
  • Vertically aligned carbon nanotubes on nickel coated glass substrates were obtained at low temperatures below 600$\^{C}$ by plasma enhanced hot filament chemical vapor deposition where acetylene gas was used as the carbon source and ammonia gas was used as the dilution gas and catalyst. The diameters of the nanotubes decreased from 96 m to 41 m as NH$_3$/C$_2$H$_2$ ratio increased from 2:1 to 5:1. Total flow rate of input gases with constant NH$_3$/C$_2$H$_2$ ratio did not change the diameter of carbon nanotubes. No growth of the carbon nanotubes was observed with only C$_2$H$_2$ nor N$_2$ instead of NH$_2$. G line and D line in Raman spectra were observed, which implies that there were many structural defects in carbon nanotubes.

  • PDF

Synthesis of Graphene Nanoribbon via Ag Nanowire Template

  • Lee, Su-Il;Kim, Yu-Seok;Song, U-Seok;Kim, Seong-Hwan;Jeong, Sang-Hui;Park, Sang-Eun;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.565-565
    • /
    • 2012
  • 그래핀(Graphene) 기반의 전계효과 트랜지스터(Field effect transistor) 응용에 있어, 가장 핵심적인 도전과제중 하나는 에너지 밴드갭(Energy bandgap)을 갖는 그래핀 채널의 제작이다. 그래핀은 에너지 밴드갭이 존재하지 않는 반금속(semi metal)의 특성을 지니고 있어, 그 본래의 물리적 특성을 지니고서는 소자구현에 어려움이 있다. 그러나 폭이 수~수십 나노미터인 그래핀 나노리본(Graphene nanoribbon)의 경우 양자구속효과(Quantum confinement effect)에 의하여 에너지 밴드갭이 형성되며, 갭의 크기는 리본의 폭에 반비례한다는 연구결과가 보고된 바 있다. 이러한 이유에서, 효과적이며 실현가능한 그래핀 나노리본의 제작은 필수적이다. 본 연구에서는 은 나노 와이어(Ag nanowire)를 기반으로 한 그래핀 나노리본의 합성을 연구하였다. 은 나노와이어를 열화학 기상증착법(Thermal chemical vapor deposition)을 이용, 아세틸렌(Acetylene, C2H2) 가스를 탄소공급원으로 하여 그래핀을 나노와이어 표면에 합성하였다. 합성과정에서 구조에 영향을 미치는 요인인 합성온도와 가스의 비율, 압력 등을 조절하여 최적화된 합성조건을 확립하였다. 합성된 나노리본의 특성을 라만분광법(Raman spectroscopy)과 주사전자 현미경(Scanning electron microscopy), 투과전자현미경(Transmission electron microscopy), 원자힘 현미경(Atomic force microscopy)를 통하여 분석하였다.

  • PDF

Concentrations of $C_2$~$C_9$ Volatile Organic Compounds in Ambient Air in Seoul (서울 대기 중에서 $C_2$~$C_9$ 휘발성 유기화합물의 농도)

  • Na, Gwang-Sam;Kim, Yong-Pyo;Kim, Yeong-Seong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.2
    • /
    • pp.95-106
    • /
    • 1998
  • Volatile organic compounds (VOCs) from Ca to C9 were investigated with nine ambient air samples collected in April 26, August 17, 1996 and January 23, 1997 in a Seoul site. On each sampling day, three 2-hr integrated canister samples were collected in early morning, early afternoon and late afternoon, respectively to study temporal . variation of VOCs. Most of VOC species showed diurnal variation with higher concentrations in the early morning and lower concentrations in the afternoon. The concentrations of light alkanes were high, probably due to the emission from liquefied petroleum gas (LPG) and evaporation of gasoline. Especially, the concentration of propane was the highest in the morning samples. The concentrations of propane, ethylene, acetylene, and toluene were prominent in their hydrocarbon groups, respectively. These components were the main source of car exhaust, gasoline evaporization, LPG, or solvent usage.

  • PDF

Development of Management Software for Transformers Based on Artificial Intelligent Analysis Technology of Dissolved Gases in Oil (지능형 유중가스 분석기술 기반 유입식 변압기 전산관리 프로그램 개발)

  • Sun Jong-Ho;Han Sang-Bo;Kang Dong-Sik;Kim Kwang-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.578-584
    • /
    • 2005
  • This paper describes development of management software for transformers based on artificial intelligent analysis technology of dissolved gases in oil. Fault interpretation using the artificial intelligent analysis is performed by the artificial neural network and a rule based on the analysis of dissolved gases. The used gases are acetylene($C_{2}H_{2}$), hydrogen($H_2$), ethylene($C_{2}H_{4}$), methane($CH_4$), ethane($C_{2}H_{6}$), carbon monoxide(CO) and carbon dioxide($CO_2$). This software is mainly composed of gases input, fault's causes, expected fault's phenomena in detail, the decision on maintenance as well as report and gas trend windows. It is indicated that this is very powerful software for the efficient management of oil-immersed transformers using data analysis of gas components.

Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by Plasma-enhanced Chemical Vapor Deposition (플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성)

  • 오정근;주병권;김남수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1248-1254
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and ate analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene(C$_2$H$_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen(H$_2$) gas plasma indicates better vortical alignment, lower temperature process, and longer tip, compared to that grown by ammonia(NH$_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be 2.6 V/${\mu}{\textrm}{m}$ We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.