• Title/Summary/Keyword: ACE 유전자

Search Result 54, Processing Time 0.017 seconds

Physico-chemical Properties and Antibacterial Activities of Lactonic Sophorolipid (락톤형 소포로리피드의 물리화학적 특성 및 항균효과)

  • Cho, Soo A;Eom, Gyeong Tae;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.303-307
    • /
    • 2019
  • Sophorolipid is a biological surfactant of the glycolipid structure produced by Candida bombicola, which generally exists as a mixture of acidic and lactonic forms. In this study, we investigated physico-chemical properties, antibacterial activities, and cytotoxicity of the sophorolipid containing more than 96% of the lactonic form, produced by the gene regulation of production strains and application of a metabolic engineering technique. The lactonic sophorolipid showed a weak acidity in the range of pH 3.2~4.6 when diluted in water at the concentrations from 1 to 0.001 wt%. The $pK_a$ value of the lactonic sophorolipid was estimated to be around 4.3 from the acid-base titration curve. The critical micelle concentration (CMC) of the lactonic sophorolipid was $10^{-2}wt%$, at which the surface tension of aqueous solution was reduced to 36 mN/m. The lactonic sophorolipid showed the minimum inhibitory concentrations (MIC) of $1{\times}10^{-3}$ and $5{\times}10^{-3}g/mL$ against Propionibacterium acnes and Corynebacterium xerosis, respectively. The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay showed that cytotoxicity of the lactonic sophorolipid was ten times lower than that of triclosan.

Utilization of qPCR Technology in Water Treatment (수질분석에 사용되는 qPCR기술)

  • Kim, Won Jae;Hwang, Yunjung;Lee, Minhye;Chung, Minsub
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.235-241
    • /
    • 2022
  • According to the World Water Development Report 2015 released by the United Nations, drinking water is expected to decrease by 40% by 2030. This does not mean that the amount of water decreases, but rather that the water source is contaminated due to environmental pollution. Because microbes are deeply related to water quality, the analysis of microbe is very important for water quality management. While the most common method currently used for microbial analysis is microscopic examination of the shape and feature after cell culture, as the gene analysis technology advances, quantitative polymerase chain reaction (qPCR) can be applied to the microscopic microbiological analysis, and the application method has been studied. Among them, a reverse transcription (RT) step enables the analysis of RNA by RT-PCR. Integrated cell culture (ICC)-qPCR shortens the test time by using it with microbial culture analysis, and viability qPCR can reduce the false positive errors of samples collected from natural water source. Multiplex qPCR for improved throughput, and microfluidic qPCR for analysis with limited amount of sample has been developed In this paper, we introduce the case, principle and development direction of the qPCR method applied to the analysis of microorganisms.

Adsorption of Glycerol on Hydroxyapatite Enhanced Colloidal Stability in Phosphate Buffered Saline Solution (글리세롤 흡착으로 인산완충식염수에서 콜로이드 안정성이 향상된 수산화인회석 합성)

  • Jaun An;Hyebin Choi;Keunyoung Lee;Ki-Young Kwon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.670-673
    • /
    • 2023
  • The biocompatibility of hydroxyapatite (HAP) has led to its application in various fields. To accomplish practical biological applications, such as drug/gene delivery, the colloidal stability of HAP in phosphate-buffered saline (PBS) is particularly important. In this study, we prepared a glycerol incorporated-HAP (Gly-HAP) by heating HAP in a glycerol environment at 200 ℃. To compare morphology and colloidal stability, HAP prepared at room temperature (RT-HAP) was thermally treated in water at 200 ℃ (H2O-HAP). The heat treatment of HAP in both water and glycerol solutions results in an increase in the crystallinity of HAPs. Due to the low solubility of HAP in glycerol and the adsorption of glycerol on the HAP surface, crystal growth is limited. However, the heat-treated HAP under water increased in size by approximately four times compared to the initial crystallites. Compared to RT-HAP and H2O-HAP, Gly-HAP shows improved colloidal stability in PBS, which originates from the adsorption of glycerol on the HAP surface that inhibits the agglomeration of individual HAP precipitates.

Etiological Properties and Coat Protein Gen Analysis of Potato Virus Y Occuring in Potatoes of Korea (우리나라 감자에 발생하는 PVY의 병원학적 특성 및 외피단백질 유전자 분석)

  • ;Richard M. Bostock
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1995.06b
    • /
    • pp.77-96
    • /
    • 1995
  • To obtain basic informations for the improvement of seed potato production in Korea, some etiological properties of potato virus Y(PVY) distributed in the major seed potato production area(Daekwanryeong) were characterized, and the nucleotide and amino acid sequences of the coat protein gene of the PVY strains isolated were analyzed. PVY strains in Daekwonryeong, an alpine area, were identified to be two strains, PVYo and PVYN by symptoms of indicator plants, and their distribution in potato fields was similar. Major symptom on potato varieties by PVY was grouped as either mosaic alone or mosaic accompanied with veinal necrosis in the lower leaves. The symptom occurrence of the two symptoms was similar with Irish Cobbler, but Superior showed a higher rate of mosaic symptom than the other. The PVY strain which was isolated from potato cv. Superior showing typical mosaic symptoms produced symptoms of PVY-O on the indicator plants of Chenopodium amaranticolor, Nicotiana tabacum cv. Xanthi nc and Physalis floridana, but no symptom o Capsicum annum cv. Ace. Moreover, results from the enzyme-linked immunosorbent assay with monoclonal and polyclonal antibodies showed that the isolated PVY reacts strongly with PYV-O antibodies but does not react specifically with PVY-T antibodies. The purified virus particles were flexious with a size of 730$\times$11nm. On the basis of the above characteristics, the strain was identified to be a PVY-O and named as of PVY-K strain. The flight of vector aphids was observed in late May, however, the first occurrence of infected plants was in mid June with the bait plants surrounded with PVY-infected potato plants and early July with the bait plants surrounded with PVY-free potato plants. PVY infection rates by counting symptoms on bait plants (White Burley) were 1.1% with the field surrounded with PVY-free potato plants and 13.7% the fields surrounded with PVY-infected potato plants, showing the effect of infection pressure. The propagated PVY-K strain on tobacco(N. sylvestris) was purified, and the RNA of the virus was extracted by the method of phenol extraction. The size of PVY-K RNA was measured to be 9, 500 nucleotides on agarose gel electrophoresis. The double-stranded cDNAs of PVY-K coat protein(CP) gene derived by the method of polymerase chain reaction were transformed into the competent cells of E. coli JM 109, and 2 clones(pYK6 and pYK17) among 11 clones were confirmed to contain the full-length cDNA. Purified plasmids from pYK17 were cut with Sph I and Xba I were deleted with exonuclease III and were used for sequencing analysis. The PVY-K CP gene was comprised of 801 nucleotides when counted from the clevage site of CAG(Gln)-GCA(Ala) to the stop codon of TGA and encoded 267 amino acids. The molecular weight of the encoded polypeptides was calculated to be 34, 630 daltons. The base composition of the CP gene was 33.3% of adenine, 25.2% of guanine, 20.1% of cytosine and 21.4% of uracil. The polypeptide encoded by PVY-K CP gene was comprised of 22 alanines, 20 threonines, 19 glutamic acids and 18 glycines in order. The homology of nucleotide sequence of PVY-K CP gene with those of PVY-O(Japan), PVY-T(Japan), PVY-TH(Japan), PVYN(the Netherlands), and PVYN(France) was represented as 97.3%, 88.9%, 89.3%, 89.6% and 98.5%, respectively. The amino acid sequence homology of the polypeptide encoded by PVY-K CP gene with those encoded by viruses was represented as 97.4%, 92.5%, 92.9%, 92.9%, and 98.5%, respectively.

  • PDF