• Title/Summary/Keyword: ACCELEROMETER

Search Result 1,209, Processing Time 0.026 seconds

User Authentication Using Accelerometer Sensor in Wrist-Type Wearable Device (손목 착용형 웨어러블 기기의 가속도 센서를 사용한 사용자 인증)

  • Kim, Yong Kwang;Moon, Jong Sub
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • This paper proposes a method of user authentication through the patterns of arm movement with a wrist-type wearable device. Using the accelerometer sensor which is built in the device, the 3-axis accelerometer data are collected. Then, the collected data are integrated and the periodic cycle are extracted. In the cycle, the features of frequency are generated with the accelerometer. With the frequency features, 2D Gaussian mixture are modelled. For authenticating an user, the data(the accelerometer) of the user at some point are tested with confidence interval of the Gaussian distribution. The model showed a valuable results for the user authentication with an example, which is average 92% accuracy with 95% confidence interval.

A Control of Mobile Inverted Pendulum using Single Accelerometer (단일 가속도 센서에 의한 모바일 역진자 제어)

  • Ha, Hyun-Uk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.440-445
    • /
    • 2010
  • This paper proposes a single accelerometer sensor control algorithm to mobile inverted pendulum, generally called 'Segway', and evaluates the performance of this system comparing to the conventional ones. The commercialized 'Prototype Segway-PT' is initially considered as a next-generation transport vehicle. However, this robot is operated by three gyroscopes and two accelerometers to control the posture and speed, and it requires the complex signal processing for fusing the two sets of data. As the result of this, the growth rate of market size of 'Segway' is slow because of its high price mainly. In this paper, the mobile inverted pendulum is operated by a single accelerometer to simplify the control system to lower the price. Low pass filter is one of the good sensors to reducing the variation of an accelerometer, but it has time delay. This time delay disturbs real-time mobile inverted pendulum control. Like this, other various algorithms are used for this system, but each one has its own weak point. So this paper proposes a new filtering method, median filter and EKF. Median filter is used to image processing to reject impulse elements like salt and pepper noise. As the major performance evaluation parameter for the accelerometer, the high-frequency to low frequency ratio from FFT (Fast Fourier Transform) is used. Effectiveness of the proposed algorithms has been verified through the real experiments and the results are demonstrated.

Development of a MEMS Resonant Accelerometer Based on Robust Structural Design (강건 구조설계에 기반한 미소 공진형 가속도계의 개발)

  • Park, U-Sung;Boo, Sang-Pil;Park, Soo-Young;Kim, Do-Hyung;Song, Jin-Woo;Jeon, Jong-Up;Kim, Joon-Won
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.114-120
    • /
    • 2012
  • This paper describes the design, fabrication and testing of a micromachined resonant accelerometer consisting of a symmetrical pair of proof masses and double-ended tuning fork(DETF) oscillators. Under the external acceleration along the input axis, the proof mass applies forces to the oscillators, which causes a change in their resonant frequency. This frequency change is measured to indicate the applied acceleration. Pivot anchor and leverage mechanisms are adopted in the accelerometer to generate larger force from a proof mass under certain acceleration, which enables increasing its scale factor. Finite element method analyses have been conducted to design the accelerometer and a silicon on insulator(SOI) wafer with a substrate glass wafer was used for fabricating it. The fabricated accelerometer has a scale factor of 188 Hz/g, which is shown to be in agreement with analysis results.

Comparison of smartphone accelerometer applications for structural vibration monitoring

  • Cahill, Paul;Quirk, Lucy;Dewan, Priyanshu;Pakrashi, Vikram
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Recent generations of smartphones offer accelerometer sensors as a standard feature. While this has led to the development of a number of related applications (apps), there has been no study on their comparative or individual performance against a benchmark. This paper investigates the comparative performance of a number of smartphone accelerometer apps amongst themselves and to a calibrated benchmark accelerometer. A total of 12 apps were selected for testing out of 90 following an initial review. The selected apps were subjected to sinusoidal vibration testing of varying frequency and the response of each compared against the calibrated baseline accelerometer. The performance of apps was quantified using analysis of variance (ANOVA) and test of significance was carried out. The apps were then compared for a realistic dynamic scenario of measuring the acceleration response of a bridge due to the passage of a French Train $\grave{a}$ Grande Vitesse (TGV) in a laboratory environment.

Fabrication of the Three Dimensional Accelerometer using Bridge Combination Detection Method (브리지조합 검출방식을 이용한 고온용 3축 가속도센서 제작)

  • Son, Mi-Jung;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.196-202
    • /
    • 2000
  • In this paper, we proposed the new bridge combination detection method for three dimensional piezoresistive silicon accelerometer, and the accelerometer with SOI structures was fabricated by bulk micromachining technology for using higher temperature than $200^{\circ}C$. The sensitivities of fabricated accelerometer for X, Y and Z-axis acceleration were about 8mV/V G, 8mV/V G and 40mV/V G. The nonlinearity of the output voltage was 1.6%FS and cross-axis sensitivity was within 4.6%. We confirmed that the three bridges detection method is very simple and the output characteristics of this accelerometer were similar to arithmetic circuit method accelerometer. The temperature characteristics of SOI structure accelerometer showed high operating temperature and good stability. And the temperature coefficient of offset voltage and sensitivity were $1033ppm^{\circ}C^{-1}$ and $1145ppm^{\circ}C$ respectively.

  • PDF

Development of a Low Frequency Accelerometer using the Fiber Bragg Grating Sensor (Fiber Bragg Grating 센서를 이용한 저진동 가속도계 개발)

  • Pack, In-Seok;Kang, Han-Bin;Lee, Kye-Kwang;Lee, Seok-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1101-1109
    • /
    • 2012
  • Accelerometers play a key role in the structural assessment. However, the current electric type accelerometers have certain limitations to apply some structures such as heavy cabling labor, installed sea structure and sensitivity to electromagnetic fields. An optical Fiber Bragg Grating (FBG) accelerometer has many advantages over conventional electrical sensors since their immunity to electromagnetic interference and their capability to transmit signals over long distance without any additional amplifiers, and there is no corrosion from sea water. In this paper, we have developed a new FBG-based accelerometer. The accelerometer consists of two cantilevered type beams and a mass and two rollers. A bragg grating element is not directly glued to a cantilever to avoid possible non-uniform strain in the element. Instead, the bragg grating element will be attached to rotation part that rolled inducing vertical movement of the mass and support cantilever beams so that the bragg grating element is uniformly tensioned to achieve a constant strain distribution. After manufacturing, we will prove the performance and the natural frequency of the accelerometer through the experiment with a vibration shaker. The FBG-based accelerometer is developed for measuring the vibration not exceeding 50 Hz for the marine and civil structures.

Application of High-precision Accelerometer Made in Korea to Health Monitoring of Civil Infrastructures (국산 고정밀 가속도계의 건설 구조물 적용성 평가)

  • Kwon, Nam-Yeol;Kang, Doo-Young;Sohn, Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.277-283
    • /
    • 2016
  • A high-precision force-feedback 3-axes accelerometer developed in Korea has been investigated and studied for the verification of feasibility in the computational analysis and health monitoring of civil infrastructures. Through a series of experiment, the nonlinearity, bandwidth, low-frequency signal measurement accuracy and bias characteristics of the accelerometer has been thoroughly compared to those of two accelerometers produced by two market leaders in domestic and global accelerometer market. The experiment results shows that the overall measurement performance of the accelerometer has superiority over the performance of the two accelerometers from global market leader companies. Especially, the accelerometer shows a better low-frequency signal measurement accuracy and constant bias characteristic, which are mostly required in the computational analysis and the long-term health monitoring of large-scale civil infrastructures.

Biaxial Accelerometer-based Magnetic Compass Module Calibration and Analysis of Azimuth Computational Errors Caused by Accelerometer Errors (2 축 가속도계 기반 지자기 센서 모듈의 교정 및 가속도계 오차에 의한 방위각 계산 오차 분석)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.149-156
    • /
    • 2014
  • A magnetic compass module must be calibrated accurately before use. Moreover, the calibration process must be performed taking into account any magnetic dip if the magnetic compass module has tilt angles. For this, a calibration method for a magnetic compass module is explained. Tilt error of the magnetic compass module is compensated using a biaxial accelerometer generally. The accelerometer error causes a tilt angle calculation error that gives rise to an azimuth calculation error. For error property analysis, error equations are derived and simulations are performed. In the simulation results, the accuracy of derived error equations is verified. If a biaxial magnetic compass module is used instead of a triaxial one, the magnetic dip and z-axis magnetic compass data must be estimated for tilt compensation. Lastly, estimation equations for the magnetic dip and z-axis magnetic compass data are derived, and the performance of the equations is verified based on a simulation.

Thermal Response Analysis of a Low Thermal Drift Three-axis Accelerometer for High Temperature Environments

  • Ishida Makoto;Lee Kyung Il;Takao Hidekuni;Sawada Kazuaki;Seo Hee Don
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.872-875
    • /
    • 2004
  • In this paper, thermal response analysis of a temperature controlled three-axis accelerometer for high temperature environments with integrated micro-heaters and temperature sensors is investigated with finite element method (FEM) program, ANSYS and infrared thermal measurement systems. And availability to application fields from a viewpoint about short thermal response time is discussed. In this paper, the time of three-axis accelerometer for high temperatures becoming $300^{\circ}C$ by integrated micro-heaters and temperature sensors to reduce thermal drift characteristics was analyzed as a thermal response time of this device. The simulated thermal response time (time until SOI piezoresistors actually becomes $300^{\circ}C$) of three-axis accelerometer for high temperatures with ANSYS is about 0.6s, and measured result with infrared temperature measurement systems is about 0.64s. Experimental results using infrared thermal measurement systems agreed well with these theoretical results.

  • PDF