• Title/Summary/Keyword: AC-module

Search Result 176, Processing Time 0.023 seconds

A new AC/DC/AC converter using Soft-Switched-Inductor Module (Soft-Switched-Inductor Module을 사용한 새로운 방식의 AC/DC/AC converter)

  • Jeon, S.J.;Jeong, D.L.;Lee, B.W.;Cho, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.559-561
    • /
    • 1994
  • In this paper a new AC/DC/AC converter in which Soft-Switched-Inductor Module is used, is proposed. This new converter adopts ZVS(Zero-Voltage-Switching) for main switches. Therefore the switching loss is minimized and high frequency operation is possible. Operations principles, short analyses and computer simulation results are presented.

  • PDF

A Novel Flyback-type Utility Interactive Inverter for AC Module Systems

  • Shimizu Toshihisa;Nakamura Naoki;Wada Keiji
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.518-522
    • /
    • 2001
  • In recent years, natural energy has attracted growing interest because of environmental concerns. Many studies have been focused on photovoltaic power generation systems because of the ease of use in urban areas. On the conventional system, many photovoltaic modules (PV modules) are connected in series in order to obtain the sufficient DC-bus voltage for generating AC output voltage at the inverter circuit. However, the total generation power on the PV modules sometimes decreases remarkably because of the shadows that partially cover the PV modules. In order to overcome this drawback, an AC module strategy is proposed. On this system, a small power DC-AC utility interactive inverter is mounted on each PV module individually and the inverter operates so as to generate the maximum power from the corresponding PV module. This paper presents a novel flyback-type utility interactive inverter circuit suitable for AC module systems. The feature of the proposed system are, (1) small in volume and light in weight, (2) stable AC current injection, (3) enabling a small DC capacitor. The effectiveness of the proposed system is clarified through the simulation and the experiments.

  • PDF

Soft Switching DC-DC Converter for AC Module Type PV Module Integrated Converter (AC 모듈형 태양광 모듈 집적형 컨버터를 위한 소프트 스위칭 DC-DC 컨버터)

  • Youn, Sun-Jae;Kim, Young-Ho;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.247-255
    • /
    • 2013
  • In this paper, a soft switching DC-DC converter for AC module type photovoltaic (PV) module integrated converter is proposed. A push-pull converter is suitable for a low voltage PV AC module system because the step-up ratio of a high frequency transformer is high and the number of primary side switches is relatively small. However, the conventional push-pull converters do not have high efficiency because of high switching losses by hard switching and transformer losses (copper and iron losses) by high turns-ratio of the transformer. In the proposed converter, primary side switches are turned on at zero voltage switching (ZCS) condition and turned off at zero current switching (ZVS) condition through parallel resonance between secondary leakage inductance of the transformer and a resonant capacitor. Therefore the proposed push-pull converter decreases the switching loss using soft switching of the primary switches. Also, the turns-ratio of the transformer can be reduced by half using a voltage-doubler of secondary side. The theoretical analysis of the proposed converter is verified by simulation and experimental results.

Loss Analysis according to Configuration Method of AC Module Integrated Converter for Photovoltaic System (태양광 발전 시스템용 AC 모듈 집적형 전력변환기의 구성 방식에 따른 손실 분석)

  • Kang, Seung-Hyun;Son, Won-Jin;Ann, Sangjoon;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.311-318
    • /
    • 2020
  • A photovoltaic (PV) system uses an AC module integrated converter (MIC) to operate PV cells at a maximum power point (MPP) and for high efficiency. The MPP of a PV cell varies depending on partial shading conditions, and loss occurs differently according to the configuration method of the PV-MIC. Therefore, this study compares the losses of passive components and power semiconductors according to the partial shading conditions of the PV module. Theoretical loss analysis is performed using parameters for the datasheet and PSIM simulation results. Analysis results verify that the one-stage PV-MIC demonstrates high efficiency.

A Study on PV AC-Module with Active Power Decoupling and Energy Storage System

  • Won, Dong-Jo;Noh, Yong-Su;Lim, Hong-Woo;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1894-1903
    • /
    • 2016
  • In general, electrolytic capacitors are used to reduce power pulsations on PV-panels. However, this can reduce the reliability of the PV AC-module system, because electrolytic capacitors have a shorter lifetime than PV-panels. In addition, PV-panels generate irregular power and inject it into the grid because the output power of a PV-panel depends on the surrounding conditions such as irradiation and temperature. To solve these problems, a grid-connected photovoltaic (PV) AC-module with active power decoupling and energy storage is proposed. A parallel bi-directional converter is connected to the AC module to reduce the output power pulsations of PV-panels. Thus, the electrolytic capacitor can be replaced with a film capacitor. In addition, the irregular output power due to the surrounding conditions can be regulated by using a parallel energy storage circuit. To maintain the discontinuous conduction mode at low irradiation, the frequency control method is adopted. The design method of the proposed converter and the operation principles are introduced. An experimental prototype rated at 125W was built to verify the performance of the proposed converter.

Current sensorless MPPT for PV-AC module flyback inverter (PV-AC 모듈형 플라이백 인버터의 전류 센서리스 MPPT제어기법)

  • Choi, Bong-Yeon;Kim, Young-Ho;Ji, Young-Hyok;Lee, Tae-Won;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.49-50
    • /
    • 2012
  • Maximum power point tracking(MPPT) algorithm is needed in PV AC module power conditioning system because of the nonlinear current-voltage characteristics. Conventional MPPT algorithm is required to know PV-module output current and voltage. Thus, PV-AC module must have voltage and current sensor. In this paper, a current-sensorless MPPT algorithm, which uses only the voltage sensor, is presented for Flyback inverter.

  • PDF

Algorithm for Reducing the Effect of Network Delay of Sensor Data in Network-Based AC Motor Drives

  • Chun, Tae-Won;Ahn, Jung-Ryol;Lee, Hong-Hee;Kim, Heung-Geun;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.279-284
    • /
    • 2011
  • Network-based controls for ac motor drive systems are becoming increasingly important. In this paper, an ac motor control system is implemented by a motor control module and three sensor modules such as a voltage sensor module, a current sensor module, and an encoder module. There will inevitably be network time delays from the sensor modules to the motor control system, which often degrades and even destabilizes the motor drive system. As a result, it becomes very difficult to estimate the network delayed ac sensor data. An algorithm to reduce the effects of network time delays on sensor data is proposed, using both a synchronization signal and a simple method for estimating the sensor data. The algorithm is applied to a vector controlled induction motor drive system, and the performance of the proposed algorithm is verified with experiments.

Module-Type Switching Rectifier for Cathodic Protection of Underground and Maritime Metallic Constructions (지하매설 및 해양 금속구조물 음극방식용 모듈 타입 스위칭 정류기)

  • 문상호;김보경;김인동;노의철;권영원;정성우;임헌호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.570-578
    • /
    • 2002
  • Cathodic protection is widely used to prevent corrosion of steel materials buried in the underground and sea. As a rectifier for cathodic protection, the conventional phase-controlled rectifiers have been used so far in spite of such shortcomings as large volume, heavy weight and floor power factor. In order to overcome such disadvantages, this paper proposes a new module-type switching rectifier for cathodic protection, which is composed of two parts, namely, AC/DC converter and module- type DC/DC converter. The AC/DC converter is a single-phase IGBT PWM rectifier, thus resulting in almost unity power factor and controlled DC output voltage. The module-type DC/DC converter operates under ZVS/ZCS switching condition to permit high frequency switching operation. It enables to use high-frequency transformer for electrical isolation, thus reducing volume and weight of overall system and improving system efficiency. It should be anticipated that the proposed rectifier techniques apply to the similar technical areas.

Grid-connected PV-AC module with Decoupling and Energy Storage Functions using Flyback Inverter (디커플링과 에너지 저장 기능을 갖는 계통 연계형 PV-AC Module용 플라이백 인버터)

  • Ryu, Moo-Young;Oh, Min-Seuk;Noh, Yong-Su;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.475-476
    • /
    • 2013
  • In single-phase flyback inverter for grid-connected PV-AC module, power ripple is occurred as two times grid frequency on input capacitor. So, decoupling method has attracted interest recently. Also, power generation of PV depending on irradiation is limited at particular time, so use of energy storage system can increase energy efficiency. In this paper, flyback inverter for grid-connected PV-AC module which can operate decoupling and energy storage functions is proposed and verified by PSIM simulation.

  • PDF

Design of Vector Control Module for AC Motor Using FPGA (FPGA를 이용한 AC 전동기의 벡터 제어 모듈 설계)

  • Kim, Seok-Hwan;Lim, Jeong-Gyu;Seo, Eun-Kyung;Shin, Hwi-Beom;Lee, Hyun-Woo;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.254-256
    • /
    • 2005
  • This paper describes a design of a vector control module for AC motor using high density FPGA. In the proposed vector controller, the vector control blocks including inverse dq transform, space vector PWM and quadrature encoder pulse module are implemented in a FPGA using a VHDL. The simulation results are provided to show the validity of the proposed vector control module.

  • PDF