• Title/Summary/Keyword: AC-electric load

Search Result 133, Processing Time 0.022 seconds

Development of the CO2 Inverter Welding Controller for Compensation of Voltage Loss (전압손실 보상용 CO2 인버터 용접기 콘트롤라 개발)

  • Bae, Jong-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.54-60
    • /
    • 2005
  • In a $CO_2$ inverter welding machine, stable arcs can be generated and a welding performance that is a goal of welding can be improved when stable electric power with a low voltage and a high current is supplied to a electrode that is the secondary part (output load terminal) and the base metal. For such a stable power supply, therefore, the AC arc welding machine, the thyristor welder, and the inverter welder have been developed in order according to development of the power electronics techniques. Up to now, the thyristor welding machine is still broadly used but the application volume is gradually reduced by development of the inverter welder. Because the welding performance of the inverter welder is very good and the weight and size of the welder is remarkably light and small. The final goal of this research is to develop the voltage loss compensator that is a drawback of the inverter welder and improve the welding performance using the developed compensator.

  • PDF

Simple Al Robust Digital Position Control of PMSM using Neural Network Compensator (신경망 보상기를 이용한 PMSM의 간단한 지능형 강인 위치 제어)

  • Ko, Jong-Sun;Youn, Sung-Koo;Lee, Tae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.557-564
    • /
    • 2000
  • A very simple control approach using neural network for the robust position control of a Permanent Magnet Synchronous Motor(PMSM) is presented. The linear quadratic controller plus feedforward neural network is employed to obtain the robust PMSM system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a feedforward recall and error back-propagation training. Since the total number of nodes are only eight, this system can be easily realized by the general microprocessor. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. In addition, the robustness is also obtained without affecting overall system response. This method is realized by a floating-point Digital Signal Processor DS1102 Board (TMS320C31).

  • PDF

A study on the power conversion system using Dye-Sensitized Solar cell (DSC를 활용한 상용전력변환 시스템에 관한 연구)

  • Kim, Jin-Young;Park, Sung-June;Park, Hae-Young;Kim, Woo-Sung;Kim, Hwi-Young;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.195-198
    • /
    • 2006
  • The technology of Solar Power conversion System is defined as a solar cell that changes the sol ar energy into the direct electric energy, power conversion and control technology that convert the dc power into ac power The solar cell module, power conversion, and a control part in component parts consisting a solar power conversion system have influence on its performance. The roles of power conversion and a control part supply the direct current generated by solar cell module for a load with high efficiency as conveniently as possible in this study, the power conversion systen that can generate solar power using DSC module was developed and its characteristics was experimented. The characteristics of the DSC power conversion system including MOSFET and DSP micro processor, high speed devices, was simulated using Psim. According to the results, converter and inverter was manufactured in detail and the performance characteristics were studied.

  • PDF

Instantaneous Voltage Control Scheme of Auxiliary Power Supply System for Electric Railway Vehicles (철도차량 보조전원장치의 순시전압제어)

  • 김재식;최재호;임성수;이은규
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.349-356
    • /
    • 1999
  • This paper presents an instantaneous voltage control scheme of au킹liary power supply system for the electric railway v vehicles, The resonance problem of the LC filter and the existing steady state error are more serious as the use of l instantaneous voltage control techniques for the fast transient response at the nonlinear load, A filter capacitor current f feedback loop is considered to increase the damping ratio of the voltage transfer function for the suppression of the resonance problem of the LC inverter output filter. To eliminate the steady state en‘or existing in case of the AC l instantaneous voltage control. the high gain transfer function is added to the conventional PI controller. The theoretical a analysis is well described with the simulation results. The validity of the proposed schemes is well verified through the s simulation and expelimental results for the 5 kVA prototype.

  • PDF

A Study on the Design of Controller for Speed Control of the Induction Motor in the Train Propulsion System-2 (열차추진시스템에서 유도전동기의 속도제어를 위한 제어기 설계에 대한 연구-2)

  • Lee, Jung-Ho;Kim, Min-Seok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.166-172
    • /
    • 2010
  • Currently, vector control is used for speed control of trains because induction motor has high performance is installed in Electric railroad systems. Also, control of the induction motor is possible through various methods by developing inverters and control theory. Presently, rolling stocks which use the induction motor are possible to brake trains by using AC motor. Therefore model of motor block and induction motor is needed to adapt various methods. There is Variable Voltage Variable Frequency (VVVF) as the control method of the induction motor. The torque and speed is controlled in the VVVF. The propulsion system model in the electric railroad has many sub-systems. So, the analysis of performance of the speed control is very complex. In this paper, simulation models are suggested by using Matlab/Simulink in the speed control characteristic. On the basis of the simulation models, the response to disturbance input is analyzed about the load. Also, the current, speed and flux control model are proposed to analyze the speed control characteristic in the train propulsion system.

contactless power conversion system using the Boost converter (승압형 컨버터를 활용한 비접촉식 전력변환 시스템)

  • Lee S. J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.214-217
    • /
    • 2003
  • The connectorless power supply system on that multi-contact causes confidence when the wiring reconstructed in the rear. As you see above, contact points between sets and indoor space cause inferior function of audio frequency so it needs to be eliminated. This paper explains the structure of connectorless power supply to supply the system with power crossing the air gap in the part of inductively in the connectorless power supply of both magnetic and electrical model. To get maximum output of electrical load, compensating capacitor compensates to show inter-inductance, lequeage-inductance reducing the track-inductance and access the conditions for resonance. At that time it accesses the maximum electric power. The small change of the value of compensating capacitor causes the changes of maximum electric power. Here the power electronics technology is used not only in the industrial machinery but also in the home appliances so the switching power supply is used to actualize the miniaturization, lightweight, and high efficiency. Generally the condenser input methods are widely used in the rectification circuit of switching power supply, but condenser input method generate great quantity of high frequency components because with this method the current flows in the power input filtering condenser only around value of peak of ac input voltage. To solve these problems, installation of power factor improve circuit on the front of filtering capacitence was considered. Several methods were suggested regarding, but the active filter method which makes smalliging and highly power factor possible are the produce main stream. IC for power factor improvement can be utilized by CMOS process proposing low power consumption. When the high power factor is considered seriously in the power factor improvement circuit, active filter method is selected. In the active filter method, the boost converter is used. Regarding this ·the boost converter is needed.

  • PDF

The High Power Active Filter System for Harmonic Compensation of 25kv Electric Railway (25kV 전기철도 고조파 보상을 위한 고전력 능동전력필터 시스템에 관한 연구)

  • Kim, Jae-Chul;Rho, Sung-Chan;Lee, Yoo-Kyung
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.761-765
    • /
    • 2006
  • At present, harmonic currents cause serious problems in power conversion system using the semiconductor switching device. Also some of the conversion system provokes harmonic currents against to the main power supply system and causes hindrances for the system. Main power impedance of the traditional LC passive filter method, influences on the filter characteristics and amplifies the harmonics when resonance phenomenon is occurred. And the traditional existing 2 level inverter systems show the limit in capacity of voltage and current in case of occurring sudden load change. So, to solve this problem active filter which uses cascaded H-bridge multi level inverter has been designed and ex-filter system circuits were totally investigated. With multi level active filtering system not only the size of filter but also the size of filter for transformer can be reduced by half and so as to the weight, while the capacity of inverter can be double sized and wave forms can be compensated exactly and precisely. Also by the benefit of the increase in rating capacity, the various currents owing to the load fluctuation can be dealt more steadily. In order to simulate the wave form of harmonics based on the measured data on the AC 25kV high speed Domestic Commercial railway, it was simulated with PSCAD/EMTDC and PSIM. Based on the results of this demonstration, the power supply system and inverter system would be more stable and also promoting its efficiency.

Centralized Control Algorithm for Power System Performance using FACTS Devices in the Korean Power System

  • Kang, Sang-Gyun;Seo, Sang-Soo;Lee, Byong-Jun;Chang, Byung-Hoon;Myung, Ro-Hae
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.353-362
    • /
    • 2010
  • This paper presents a centralized control algorithm for power system performance in the Korean power system using Flexible AC Transmission Systems (FACTS) devices. The algorithm is applied to the Korean power system throughout the metropolitan area in order to alleviate inherent stability problems, especially concerns with voltage stability. Generally, control strategies are divided into local and centralized control. This paper is concerned with a centralized control strategy in terms of the global system. In this research, input data of the proposed algorithm and network data are obtained from the SCADA/EMS system. Using the full system model, the centralized controller monitors the system condition and decides the operating point according to the control objectives that are, in turn, dependent on system conditions. To overcome voltage collapse problems, load-shedding is currently applied in the Korean power system. In this study, the application of the coordination between FACTS and switch capacitor (SC) can restore the solvability without load shedding or guarantee the FV margin when the margin is insufficient. Optimal Power Flow (OPF) algorithm, for which the objective function is loss minimization, is used in a stable case. The results illustrate examples of the proposed algorithm using SCADA/EMS data of the Korean power system in 2007.

Double Two Switch Forward Transformer-Linked Soft-Switching PWM DC-DC Power Converter with Tapped Inductor Filters

  • Moisseev Serguei;Koudriavtsev Oleg;Hiraki Eiji;Nakamura Mantaro;Nakaoka Mutsuo;Hamada Satoshi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.193-197
    • /
    • 2001
  • This paper presents a novel circuit topology of the double two-switch forward type high frequency transformer linked soft-switching PWM DC-DC power converter with tapped inductor filters that can operate under a condition of the low peak voltage stress across the power semiconductor devices and lowered peak current stress through the transformer for some high power applications. This circuit topology of an interleaved two-switch forward soft-switching power converter is proposed in the order to minimize an idle circulating current due to the tapped inductor filter without of any additional active auxiliary resonant-assisted snubber circuits, such as active resonant DC link snubbers and AC link snubbers, active resonant commutation leg link snubbers. The unique advantages of this power converter are less power circuit components and power semiconductor devices, constant frequency PWM scheme, cost effective configuration and wider soft-switching PWM operation range under PWM power regulations load variations. The practical effectiveness of the proposed soft-switching converter circuit topology is tested by simulations and is proved by experimental results received from the 500W-100kHz breadboard setup.

  • PDF

A Study on the Static Var Compensator Application for Compensating the Train Garage's Unbalanced Voltages in Korean National Railroad (전동차 사무소의 전압불평형 보상을 위한 SVC 적용에 관한 연구)

  • Lee, Jun-Kyong;Lee, Seung-Hyuk;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.81-89
    • /
    • 2004
  • AC electric railroad system receives its power from 3-phase transmission system. Since trainloads are moving continuously, the voltages for the single load fluctuate in the train garage, and moreover, the fluctuating voltages generate high-order harmonics. This means the difficulty in maintaining power quality in the power system. Therefore, in this paper, the adequacy of SVC application is investigated for the train garage in KNR(Korean National Railroad). Voltage drop, voltage regulation, and unbalanced voltages are assessed in the train garage for the condition of power system both with svc and without SVC. In this paper, PSCAD/EMTDC is used for the above assessment items, and the results are compared with ones which was already designed in the field in practice for the train garage. As a result, the train garage using SVC improves power quality.