• Title/Summary/Keyword: AC-PDP(AC-Plasma Display Panel)

Search Result 240, Processing Time 0.028 seconds

A study of characteristics for Image sticking in AC - Plasma Display Panel

  • Han, Yong-gyu;Lee, S.B.;Jeong, S.H.;Son, C.G.;Yoo, N.L.;Lee, H.J.;Lim, J.E.;Lee, J.H.;Jeoung, J.M.;Ko, B.D.;Oh, P.Y.;Moon, M.W.;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.263-265
    • /
    • 2005
  • In the alternative current plasma display panel(AC-PDP) technology, it is very important to remove the image sticking for improving an image quality. In this paper, we have investigated the driving method of alternative current plasma display panel(AC-PDP) for preventing image sticking. We have investigated the driving method of alternative current plasma display panel(AC-PDP) for preventing image sticking. The preventing method of image sticking was proposed by adopting the Sticking Remove Pulse(SRP). The variation of brightness is most affected by the MgO to be formed at the surface of the phosphor layer. As a result, the image sticking is reduced when the driving method adopted an SRP.

  • PDF

Improvement of Color Temperature using Auxiliary Address Pulse Driving Scheme in 42-in. WVGA Plasma Display Panel

  • Park, Ki-Hyung;Lee, Eun-Cheol;Cho, Ki-Duck;Tae, Heung-Sik;Chien, Sung-Il
    • Journal of Information Display
    • /
    • v.6 no.1
    • /
    • pp.22-27
    • /
    • 2005
  • Auxiliary address pulse driving scheme is proposed for controlling and improving the color temperature of the 42-inch WVGA ac-plasma display panel (ac-PDP) without sacrificing total luminance. Under a white-background, the color temperature of 42-inch ac-PDP is improved by about 1,700 K, whereas under a black-background, the color temperature of 42-inch ac-PDP is improved by about 3,200 K. In addition, by properly controlling the luminance in the R, G, and B cells, the color temperature of 42-inch ac-PDP can be raised from 5,827K to 10,705K.

High Efficient Energy Recovery Circuit for AC Plasma Display Panel (AC Plasma Display Panel 구동 장치의 고효율 전력 회수 회로에 관한 연구)

  • 윤원식;강필순;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.481-488
    • /
    • 2001
  • The sustaining driver for color AC Plasma Display Panel should provide alternating high voltage pulses and recover the energy discharged from the intrinsic capacitance between the scanning and sustaining electrodes inside the panel In this paper a novel efficient energy recovery circuit employing boost-up function is proposed to achieve a faster rise-time and in order to obtain a stable sustain voltage The principle of operation. features simulated results and experiment results are illustrated and verified on a 7.5-inch-panel with 200[kHz]switch frequency.

  • PDF

High Efficient AC-PDP Energy Recovery Circuit Employing Step-Up Faculty (승압 기능을 가지는 AC-PDP 구동을 위한 고효율 에너지 회수 회로에 대한 연구)

  • Kang, Feel-Soon;Park, You-Hwan;Park, Sung-Jun;Kim, Cheul-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.1-5
    • /
    • 2002
  • The sustain driver for AC plasma display panel should provide alternating high voltage pulses to ignite plasma and recover the energy discharged from the intrinsic capacitance between the scanning and sustaining electrodes inside the panel. In this paper, an efficient sustain circuit employing boost-up function is proposed to achieve a faster rise-time in order to be suitable to widely used the address display period separated (ADS) driving method. The proposed circuit improves the recovery efficiency, regardless of the variation of the panel capacitance. The principle of operation, features, and simulated results are illustrated and verified on a 7.5-inch diagonal panel at 200 [kHz] operating frequency based on experimental prototype.

  • PDF

Analysis on the Discharge Characteristics of AC Plasma Display Panel with Counter Sustain Electrodes (교류형 플라즈마 표시기의 신 대향형 구조에 대한 방전 특성 분석)

  • Bae, Hyun-Sook;Whang, Ki-Woong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1579-1583
    • /
    • 2008
  • We proposed the new structure of ac plasma display panel(PDP) to improve the luminous efficacy and driving voltage characteristics. Through two-dimensional numerical simulations, we analyzed the effects of new counter discharge type, which consists of counter sustain electrodes and auxiliary electrodes. Generally, an advantage of AC PDP with the counter sustain electrodes has been known for the driving characteristics of the low voltage. In this work, the new counter structure using the ignition discharge by the auxiliary pulse applied to the address electrode showed the result of the increased luminous efficacy. The short gap discharge between two auxiliary electrodes on the front plate could intensity the long gap discharge between counter electrodes. The reliability of simulation result could be confirmed by the experimental result in the test panel.

Discharge Properties of an AC-Plasma Display Panel

  • Sungkyoo Lim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • Two kinds of the ac-plasma display panel (PDP) with the comb type and the matrix type electrodes were fabricated. The discharge properties were studied as a function of as species (Ne and Ne+He+Xe) and its pressure. The firing voltages (Vf) of the PDP with comb type electrodes were 159 V and 195 V under pure Ne and ne+He+Xe(68:30:2) gas mixture respectively. In case of PDP cell with the matrix type electrodes the Vf was increased to 200 V for pure Ne and 240 V for Ne+He+Xe gas mixture under the same gas pressure(300 mbar).

Discharge Characteristic Analysis with a Ramp Reset Waveform Using 2-Dimensional Simulation in the PDP (AC PDP에서 2차원 수치해석을 이용한 Ramp Reset 구동파형에 따른 방전 특성 분석)

  • Park, Suk-Jae;Choi, Hoon Young;Seo, Jeong-Hyun;Lee, Seok-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.192-194
    • /
    • 2003
  • In this paper, we present a 2-Dimensional simulation model of the discharge in an ac plasma display panel cell. Therefore, we study a ramp reset waveform in an ac plasma display panel discharge cell using 2-Dimensional simulation. Finally We research a connection between priming particles' density and stability.

  • PDF

The Effect of MgO Rate Preparing Conditions and Xe Partial Pressure on the Relative Life time of an AC Plasma Display Panel

  • Park, Cha-Soo;Park, Min-Seok;Park, Joon-Young;Kim, Dong-Hyun;Lee, Ho-Jun;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.2
    • /
    • pp.35-42
    • /
    • 2003
  • This paper proposes a relative lifetime test method of MgO thin film. The suggested test conditions are 5$0^{\circ}C$, 400Torr, 20% over-voltage and 300KHz. The relative lifetime of MgO thin film is significantly affected by the MgO preparing conditions and Xe partial pressure. As result, the lifetime of the AC plasma display panel (PDP) is increased with an MgO thickness of 2000$\AA$ to 8000$\AA$ but is saturated over 5000$\AA$ (up to 9000 $\AA$). In addition, as Xe partial pressure increases, AC PDP lifetime increases.

New Shaped Electrodes to Reduce Addressing Time in a Large AC Plasma Display Panel

  • Lee, Sung-Hyun;Kim, Dong-Hyun;Park, Chung-Hoo;Jang, Yun-Seok;Ryu, Jae-Hwa
    • Journal of Information Display
    • /
    • v.2 no.1
    • /
    • pp.10-13
    • /
    • 2001
  • The addressing time can be reduced by modifying cell structure and/or driving circuits in order to replace the dual scan system by single scan in large ac plasma display panel(PDP). Moreover, the luminance of the PDP can also be increased by decreasing the addressing time. In this paper, various shapes of bus and address electrodes have been investigated with the aim of reducing the addressing time in ADS driving method. The experimental results show that the addressing time can be reduced by more than 30% compared with the conventional type by modifying the electrodes without reducing the luminance of the PDP.

  • PDF

A Study on the Discharge Characteristics with New Penning Gas Mixture for AC plasma display panel (AC plasma display panel의 페닝 방전가스 혼합비 변화에 따른 방전특성 연구)

  • 박문필;이승준;이재경;황호정
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.2
    • /
    • pp.127-134
    • /
    • 2002
  • Recently, Plasma display panel(PDP) has been in the spotlight as one of the next generation flat-panel-display device. The luminance and luminous efficiency improvement is the hot issues for making a plasma display into a large flat panel device. In this paper, We suggest a new penning gas mixture, in order to find the optimum mixture gas in plasma display panel. The optimum gas composition has been found by the partial pressure of inert gases(such as Af and Kr added to matrix of He(70%)-Ne(27%)Xe(3%) and Ne(96%)-Xe(4%)). The influences of Ar or Kr addition to Ne(96%)-Xe(4%) and He(70%)-Ne(27%)-Xe(3%) mixture gases are experimentally investigated for AC Plasma Display Panel. When rare As(0.01%-0.03%) or Kr(0.01%-0.03%) is added Ne-Xe and He-Ne-Xe mixture gases, the luminance increases over 10%-20% and luminous efficiency increases over 10%-20% at 200 Torr. It is sure that luminance and efficiency are improved by Penning effect. Also, This influence of Penning effect is shown by increased wall charge(10%-25%). In addition to the result, firing voltage and minimum sustain voltage was approximately decreased by 2V-3V.