• Title/Summary/Keyword: AC-DC-AC converter

Search Result 1,024, Processing Time 0.032 seconds

A Study on Control Methods and Harmonic Analysis of AC/DC GTO Converters (AC/DC/GTO 컨버터의 제어방식 및 고조파 분석에 관한 연구)

  • Kim, Yoon-Ho;Song, Chi-Young
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1093-1102
    • /
    • 1994
  • PWM converters employing GTO's are proposed to be used for the currently planned Korean High-Speed Train system. In this paper, operating methods and harmonic spectrums are investigated for the PWM modulated voltage controlled GTO AC/DC converter used in the High-Speed Train System. It is shown that harmonic components can be controlled by varying carrier frequency in PWM modulation schemes. Then the input power-factor control scheme is suggested and analyzed. It is found that the power-factor can be varied by controlling the converter input voltage and phase angles between the input supply voltage and the converter input voltage. Finally, simulation programs are developed and converter systems are implemented.

The Control of Single Phase AC/DC Converter by using Binary Combination (바이너리 조합에 의한 단상 AC/DC 컨버터의 제어)

  • Park, S.W.;Chun, J.H.;Woo, J.I.;Kim, J.H.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1336-1338
    • /
    • 2000
  • This paper proposed the single phase multi-level PWM AC/DC converter using binary combine which controls input current by combining buck converters to improve input current characteristic, and confirmed its validity throughout simulation and experiment. This method, which is multiplying and duplicating output of converter of equal capacity, has the advantage of being able to control unit power factor of input current and reducing of the problem caused by high frequency switching, and appling to high power converter because filter is not necessary etc.

  • PDF

A High Frequency Link Direct DC-AC Converter for Fuel Cell Power Source (연료전지 발전 시스템용 고주파 링크 DC-AC 컨버터)

  • Song, Y.J.;Park, S.I.;Jeong, H.G.;Han, S.B.;Jung, B.M.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.245-249
    • /
    • 2005
  • This paper describes a boost converter cascaded high frequency link direct dc-ac converter suitable for fuel cell power sources. A new multi-loop control for a boost converter to reduce the low frequency input current harmonics drawn from fuel cell is proposed. A new PWM technique for the cycloconverter at the secondary to reject the low order harmonics in the output voltages is presented in detail.

  • PDF

Differential type Single-stage Isolated AC-DC Converter with AC Power Decoupling for EV Battery Charger

  • ;Kim, Hyeong-Jin;Kim, Jae-Hun;;Choe, Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.198-200
    • /
    • 2018
  • In this paper a single-stage single-phase differential type isolated AC-DC converter is proposed. This converter eliminates the requirement to use bulky electrolytic capacitor from the system and at the same time provides DC charging by employing the AC Power Decoupling waveform control method. All the switches of the converter achieve ZVS turn on during half line cycle and all diodes achieve ZCS turn off during entire line cycle. A conventional controller is implemented for PFC control and output regulation, whereas a power decoupling controller is added to compensate $2^{nd}$ harmonic ripple power. In addition, an interleaving technique is applied to increase the power range of the converter and reduce the input inductor size. In the end simulation verification is performed and results are obtained for 6.6KW.

  • PDF

Thyristor전력변환기-전동기계의 무효전력의 처리에 관한 연구

  • 유철로
    • 전기의세계
    • /
    • v.31 no.1
    • /
    • pp.50-58
    • /
    • 1982
  • As a method for improving the power factor and the waveform of ac line current drawn by ac to dc converters, converters of pulse-width control type with forced commutation circuits have been developed in recent years. However, these converters have rather complex commutation circuits which contain auxiliary thyristors in addition to the main thyristors, and their performance is not satisfactory. This paper proposes a new pulse-width controlled ac to dc converter, and analyses its commutation mechanism and its input and output characteristics. The proposed converter circuit consists of a usual thyristor bridge circuit with series diodes to which reactors and diodes are added. This circuit dose not contain auxiliary thyristors, and in this sense it is simpler than the previous converter circuits of pulse-width control type. Since the main thyristors of the converter can be forcedly turned off several times in a half cycle of source voltage, a pulse-width modulation control is possible in order to improve the current waveform as well as the power factor on ac line side. As to dc output side it is shown that the adjustable range of output voltage is wide and the voltage regulation is good due to a rapid reversal of voltage across the commutating capacitors by LC resonance during commutation period. It is also shown that the regenerative operation of the converter is possible.

  • PDF

A Study on the Korea DC Distribution system topologies and its fault characteristics (국내형 직류 배전시스템 제안 및 고장특성 분석)

  • Byeon, Gil-Sung;Lee, Han-Sang;Yoon, Tae-Young;Jang, Gil-Soo;Chae, Woo-Kyu;Kim, Ju-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.486-487
    • /
    • 2011
  • In this paper, a configurable DC distributiong system is being proposed considering national power systems conditions and a comparative analysis of the transient response of the contingencies is performed with the conventional AC systems. DC systems are evaluated as a promising next-generation distribution system that provides reliable operation through high efficiency of energy use and converter control. This paper discusses about the required elements for the national DC distribution system and has analysed the fault characteristics of the AC and DC distribution systems using PSCAD/EMTDC. According to the simulation results, the DC system has improved response, due to the DC/DC converter's charging/discharging characteristics, in terms of voltage and power system characteristics when compared to AC systems.

  • PDF

PROTECTION SEQUENCE OF AC/DC CONVERTERS FOR ITER PF MAGNET COILS

  • Oh, Byung-Hoon;Hwang, Churl-Kew;Lee, Kwang-Wang;Jin, Jeong-Tae;Chang, Dae-Sik;Oh, Jong-Seok;Choi, Jung-Wan;Suh, Jae-Hak;Tao, Jun;Song, In-Ho
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.305-312
    • /
    • 2010
  • The protection sequence of an AC/DC converter for an ITER PF coil system is developed in this study. Possible faults in the coil system are simulated and the results reflected in the design of a sequence to protect the coil and converter. The inductances of the current sharing reactors and thyristor numbers in parallel with the bridge arms are optimized with the designed protection sequence.

Improved Single-Stage AC-DC LED-Drive Flyback Converter using the Transformer-Coupled Lossless Snubber

  • Jeong, Gang-Youl;Kwon, Su-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.644-652
    • /
    • 2016
  • This paper presents an improved single-stage ac-dc LED-drive flyback converter using the transformer-coupled lossless (TCL) snubber. The proposed converter is derived from the integration of a full-bridge diode rectifier and a conventional flyback converter with a simple TCL snubber. The TCL snubber circuit is composed of only two diodes, a capacitor, and a transformer-coupled auxiliary winding. The TCL snubber limits the surge voltage of the switch and regenerates the energy stored in the leakage inductance of the transformer. Also, the switch of the proposed converter is turned on at a minimum voltage using a formed resonant circuit. Thus, the proposed converter achieves high efficiency. The proposed converter utilizes only one general power factor correction (PFC) control IC as its controller and performs both PFC and output power regulation, simultaneously. Therefore, the proposed converter provides a simple structure and an economic implementation and achieves a high power factor without the need for any separate PFC circuit. In this paper, the operational principle of the proposed converter is explained in detail and the design guideline of the proposed converter is briefly shown. Experimental results for a 40-W prototype are shown to validate the performance of the proposed converter.

Study on the effect of DC voltage in oil-immersed transformer insulation system (DC 전압이 유입변압기 절연시스템에 미치는 영향에 관한 연구)

  • Jang, Hyo-Jae;Kim, Yong-Han;Seok, Bok-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1552-1553
    • /
    • 2011
  • The HVDC transformer which is one of the main equipments for HVDC(High Voltage Direct Current) electric power transmission systems is exposed to not only AC voltage but also the inflowing DC voltage which comes from the DC-AC converter systems. Therefore, the HVDC transformer insulation system is required to withstand the electric field stress under AC, DC and DC polarity reversal conditions. However the electric field distributions under those conditions are different because the AC electric field and DC electric field are governed by permittivity and conductivity, respectively. In this study, the changes of electric potential and electric field of conventional AC transformer insulation system under DC polarity reversal test condition were analyzed by FEM(Finite Element Method). The DC electric field stress was concentrated in the solid insulators while the AC electric field stress was concentrated in the mineral oil. In addition, the electric stress under that condition which is affected by the surface charge accumulation at the interfaces between insulators was evaluated. The stress in some parts could be higher than that of AC and DC condition, during polarity reversal test. The result of this study would be helpful for the HVDC transformer insulation system design.

  • PDF

Design and Performance Test of Controller of Interlinking Converter in AC/DC Microgrid in Hardware-in-the-Loop Simulation Environment (HILS 환경에서 AC/DC 마이크로그리드의 연계 컨버터 제어기 설계 및 테스트)

  • Ji, Hyeon-Kyun;Yoo, Hyeong-Jun;Kim, Hak-Man;Lee, Byeong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.527-528
    • /
    • 2015
  • 최근 다양한 디지털기기에 따른 DC 부하의 증가와 함께 기존 배전망과 연계하여 운용할 수 있는 AC 그리드와 태양광과 연료전지 같은 DC 전원에 직접적으로 연계하여 운용하는 DC 그리드를 통합하는 AC/DC 마이크로그리드에 대한 연구가 진행되고 있다. 본 논문에서는 AC 그리드와 DC 그리드를 연계 제어하는 연계(interlinking) 컨버터의 제어기를 설계하고 성능을 검토하기 위해 TMS320F28335 DSP(Digital Signal Processor)와 실시간 디지털 시뮬레이터인 eMEGAsim으로 구성된 HILS(Hardware-in-the-Loop Simulation) 시스템을 구축하고 설계된 제어기의 성능을 테스트하였다.

  • PDF