• 제목/요약/키워드: AC-DC power conversion

검색결과 234건 처리시간 0.036초

Common Mode Voltage Cancellation in a Buck-Type Active Front-End Rectifier Topology

  • Aziz, Mohd Junaidi Abdul;Klumpner, Christian;Clare, Jon
    • Journal of Power Electronics
    • /
    • 제12권2호
    • /
    • pp.276-284
    • /
    • 2012
  • AC/AC power conversion is widely used to feed AC loads with a variable voltage and/or a variable frequency from a constant voltage constant frequency power grid or to connect critical loads to an unreliable power supply while delivering a very balanced and accurate sinusoidal voltage system of constant amplitude and frequency. The load specifications will clearly impose the requirements for the inverter stage of the power converter, while wider ranges of choices are available for the rectifier. This paper investigates the utilization of a buck-type current source rectifier as the active front-end stage of an AC/AC converter for applications that require an adjustable DC-link voltage as well as elimination of the low-frequency common mode voltage. The proposed solution is to utilize a combination of two or more zero current vectors in the Space Vector Modulation (SVM) technique for Current Sources Rectifiers (CSR).

DC전철구간의 회생인버터시스템 개발 (Development of Regeneration Invertor System for DC Electric Railway System)

  • 김용기;김주락;한문섭;김준구;양영철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.505-511
    • /
    • 2008
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The purpose of this study was the development of the regenerative inverter system which suppress extra DC-line voltage and regenerate the energy instead of using a resister. That is Developed regenerative inverter system returns the regenerative energy from the DC line voltage to the utility. In addition, the inverter can be compensate the harmonics caused by the power conversion devices used in the DC traction system.

  • PDF

Hot-Swap 전력변환시스템에서 전류센서 옵셋오차의 영향 분석 (Analysis on the effect of current sensor offset error in Hot-Swap power conversion system)

  • 노준호;이광운
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.177-178
    • /
    • 2018
  • 본 논문에서는 직렬형 Hot-Swap ESS(Energy Storage System)를 구성하는 전력 변환 시스템에서 전류 센서의 옵셋 오차가 제어 성능에 미치는 영향에 대해 살펴보았다. 양방향 DC-DC 컨버터와 DC-AC 인버터에서 전류 센서 옵셋 오차의 영향에 대해 분석하고, 컴퓨터 모의 시험을 진행하여 그 특성을 파악하였다.

  • PDF

PRACTICAL EVALUATIONS OF PARASITIC RESONANT PWM DC-DC CONVERTERS FOR HIGH-POWER MEDICAL USE

  • H. Takano;J. Takahashi;Sun, J.M.;L... Gamage;M. Nakaoka
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.701-708
    • /
    • 1998
  • This paper presents a novel non-resonant PWM DC-DC converter for X-ray high-voltage power generator using the parasitic impedances of the high-voltage high-frequency link transformer with its output high-voltage control scheme and steady-state characteristics compared to the conventional series-parallel resonant DC-DC converter. The key point of this approach is to evaluate effectiveness of reduction of the turn ratio of the high-voltage high-frequency transformer on improvements in power conversion efficiency and the power factor applying a boost AC-DC converter as DC voltage source, especially in the long exposure term and light output load ranges.

  • PDF

Single-Phase Voltage-Fed Z-Source Matrix Converter

  • Fang, Xupeng;Liu, Jie
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권2호
    • /
    • pp.46-52
    • /
    • 2012
  • This paper proposes a novel single-phase ac-ac converter topology based on the Z-source concept. The converter provides buck-boost function and plays the role of frequency changer. Compared to the traditional ac-dc-ac converter, it uses fewer devices, realizes direct ac-ac power conversion, and has a simpler circuit structure, so as to have higher efficiency and better circuit characteristics. Compared to the traditional matrix converter, it provides a wider voltage regulation range. The circuit topology, operating principle, control method and simulation results are given in this paper, and the rationality and feasibility is verified.

Analysis of an AC/DC Resonant Pulse Power Converter for Energy Harvesting Using a Micro Piezoelectric Device

  • Chung Gyo-Bum;Ngo Khai D.T.
    • Journal of Power Electronics
    • /
    • 제5권4호
    • /
    • pp.247-256
    • /
    • 2005
  • In order to harvest power in an efficient manner from a micro piezoelectric (PZT) device for charging the battery of a remote system, a new AC/DC resonant pulse power converter is proposed. The proposed power converter has two stages in the power conversion process. The first stage includes N-type MOSFET full bridge rectifier. The second stage includes a boost converter having an N-type MOSFET and a P-type MOSFET. MOSFETs work in the $1^{st}$ or $3^{rd}$ quadrant region. A small inductor for the boost converter is assigned in order to make the size of the power converter as small as possible, which makes the on-interval of the MOSFET switch of the boost converter ultimately short. Due to this short on-interval, the parasitic junction capacitances of MOSFETs affect the performance of the power converter system. In this paper, the performance of the new converter is analytically and experimentally evaluated with consideration of the parasitic capacitance of switching devices.

Analysis of partial resonant AC-DC converter for high power and power factor

  • Mun, Sang-Pil;Kim, Si-Lyur;Lee, ki-Youn;Hyun-Woo;Katsunori taniguchi, Katsunori-Taniguchi
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.920-927
    • /
    • 1998
  • This paper proposed that an Analysis of a partial resonant AC-DC converter for high power and power factor operates with four choppers connecting to a number of parallel circuit. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer are included to confirm the validity of the analytical results. The partial resonant circuit makes use of an inductor using step-down and a condenser of lose-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in a partial resonant circuit makes charging energy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used

  • PDF

저전압 DC 배전시스템 구성요소의 부하 모델링 (Modeling of Load Element for a Low Voltage DC Distribution System)

  • 권기현;한준;오윤식;김응상;김철환
    • 조명전기설비학회논문지
    • /
    • 제28권6호
    • /
    • pp.113-121
    • /
    • 2014
  • At the end of the 19th century, a battle known as the War of the Currents was fought over how electricity would be generated, delivered, and utilized. In this day and age, there has been a growing interest in Green Growth policies as countermeasures against global warming. As a result of these policies, the use of new and renewable energy needed a power converter to replace fossil fuels has expanded. To reduce power consumption through high efficiency of conversion, Low Voltage DC (LVDC) distribution systems are suggested as an alternative. In a DC distribution system, DC loads are very efficient due to decrease the stages of power conversion. If the LVDC distribution system is adopted, not only DC load but also existing AC loads should be connected with LVDC system. Thus, the modeling of two loads is needed to analyze the DC distribution system. This paper, especially, is focused on the modeling of resistive load and electronic load including power electronic converters using ElectroMagnetic Transient Program (EMTP) software.

반도체 변압기용 멀티레벨 H-bridge 컨버터에 적용한 간단한 전압 밸런싱 방법 (A Simplified Voltage Balancing Method Applied to Multi-level H-bridge Converter for Solid State Transformer)

  • 정동근;김호성;백주원;조진태;김희제
    • 전력전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.95-101
    • /
    • 2017
  • A simple and practical voltage balance method for a solid-state transformer (SST) is proposed to reduce the voltage difference of cascaded H-bridge converters. The tolerance device components in SST cause the imbalance problem of DC-link voltage in the H-bridge converter. The Max/Min algorithms of voltage balance controller are merged in the controller of an AC/DC rectifier to reduce the voltage difference. The DC-link voltage through each H-bridge converter can be balanced with the proposed control methods. The design and performance of the proposed SST are verified by experimental results using a 30 kW prototype.

배전용 반도체 변압기 구현을 위한 SiC MOSFET 기반 전력변환회로 단위모듈 설계에 관한 연구 (Design and Implementation of a Power Conversion Module for Solid State Transformers using SiC MOSFET Devices)

  • 임정우;조영훈
    • 전력전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.109-117
    • /
    • 2017
  • This paper describes the design and implementation of a unit module for a 10 kVA class 13.2 kV/220 V unidirectional solid-state transformer (SST) with silicon-carbide metal-oxide-semiconductor field-effect transistors. The proposed module consists of an active-front-end (AFE) converter to interface 1320 V AC voltage source to 2500 V DC link and an isolated resonant DC-DC converter for 500 V low-voltage DC output. The design approaches of the AFE and the isolated resonant DC-DC converters are addressed. The control structures of the converters are described as well. The experiments for the converters are performed, and results verify that the proposed unit module can be successfully adopted for the entire SST operation.