• Title/Summary/Keyword: AC-DC Power Converter. PFC Controller

Search Result 8, Processing Time 0.02 seconds

High Power Factor High Efficiency PFC AC/DC Converter for LCD Monitor Adapter (LCD 모니터의 어댑터를 위한 고역률 고효율 PFC AC/DC 컨버터)

  • Park K. H.;Kim C. E.;Youn M. J.;Moon G. W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.85-89
    • /
    • 2003
  • Many single-stage PFC(power-facto.-correction) ACHC converters suffer from the high link voltage at high input voltage and light load condition. In this paper, to suppress the link voltage, a novel high power factor high efficiency PFC AC/DC converter is proposed using the single controller which generates two gate signals so that one of them is used far gate signal of the flyback DC/DC converter switch and the other is applied to the Boost PFC stage. A 130w prototype for LCD monitor adapter with universal input $(90-265V_{rms})$ and 19.5V 6.7A output is implemented to verify the operational principles and performances. The experimental results show that the maximum link voltage stress is about 450V at 270Vac input voltage. Moreover, efficiency and power factor are over $84\%$ and 0.95, respectively, under the full load condition.

  • PDF

Improved Single-Stage AC-DC LED-Drive Flyback Converter using the Transformer-Coupled Lossless Snubber

  • Jeong, Gang-Youl;Kwon, Su-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.644-652
    • /
    • 2016
  • This paper presents an improved single-stage ac-dc LED-drive flyback converter using the transformer-coupled lossless (TCL) snubber. The proposed converter is derived from the integration of a full-bridge diode rectifier and a conventional flyback converter with a simple TCL snubber. The TCL snubber circuit is composed of only two diodes, a capacitor, and a transformer-coupled auxiliary winding. The TCL snubber limits the surge voltage of the switch and regenerates the energy stored in the leakage inductance of the transformer. Also, the switch of the proposed converter is turned on at a minimum voltage using a formed resonant circuit. Thus, the proposed converter achieves high efficiency. The proposed converter utilizes only one general power factor correction (PFC) control IC as its controller and performs both PFC and output power regulation, simultaneously. Therefore, the proposed converter provides a simple structure and an economic implementation and achieves a high power factor without the need for any separate PFC circuit. In this paper, the operational principle of the proposed converter is explained in detail and the design guideline of the proposed converter is briefly shown. Experimental results for a 40-W prototype are shown to validate the performance of the proposed converter.

Input Impedance and Current Feedforward Control of Single-Phase Boost PFC Converters

  • Park, Sungmin;Park, Sung-Yeul;Bazzi, Ali M.
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.577-586
    • /
    • 2015
  • The combination of voltage feedforward and feedback control is a conventional approach for correcting the power factor in single-phase ac-dc boost converters. The feedback duty ratio increases significantly with an increase of the line frequency and input inductance. Therefore, the performance of the conventional approach is highly dependent on the bandwidth of the feedback controller. As a result, the input power quality can be significantly exacerbated due to uncompensated duty ratios if the feedback controller is limited. This paper proposes an input impedance and current feedforward control method to reduce the control portion of the feedback controller. The findings in this paper are 1) the theoretical derivation and analysis of variations of line frequency and input inductance on a power factor correction approach, 2) guaranteed consistent performance in a wide range of conditions, and 3) that a low switching frequency can be utilized by the proposed method. A MATLAB/Simulink model and a 1.2kW dual boost converter are built to demonstrate the effectiveness of the proposed method.

Differential type Single-stage Isolated AC-DC Converter with AC Power Decoupling for EV Battery Charger

  • ;Kim, Hyeong-Jin;Kim, Jae-Hun;;Choe, Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.198-200
    • /
    • 2018
  • In this paper a single-stage single-phase differential type isolated AC-DC converter is proposed. This converter eliminates the requirement to use bulky electrolytic capacitor from the system and at the same time provides DC charging by employing the AC Power Decoupling waveform control method. All the switches of the converter achieve ZVS turn on during half line cycle and all diodes achieve ZCS turn off during entire line cycle. A conventional controller is implemented for PFC control and output regulation, whereas a power decoupling controller is added to compensate $2^{nd}$ harmonic ripple power. In addition, an interleaving technique is applied to increase the power range of the converter and reduce the input inductor size. In the end simulation verification is performed and results are obtained for 6.6KW.

  • PDF

A Feedforward Compensation Method for 120Hz Output Voltage Ripple Reduction of LLC Resonant Converter (LLC 공진 컨버터의 120Hz 출력전압 리플 저감을 위한 전향보상 방법)

  • Yoon, Jong-Tae;Lee, Kui-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.46-52
    • /
    • 2021
  • This study proposes a feedforward compensation control method to reduce 120 Hz output voltage ripple in a single-phase AC/DC rectifier system composed of PFC and LLC resonant converters. The proposed method compensates for the voltage ripple of the DC-link by using the AC input and DC output power difference, and then reduces the final output voltage ripple component of 120 Hz through feedforward compensation based on the linearized frequency gain curve of the LLC resonant converter. Through simulation and experimental results, the validity of the ripple reduction performance was verified by comparing the conventional PI controller and the proposed feedforward compensation method.

High Efficiency Switch Mode Line Transformer (SMLT) Composed of Load Sharing Dual Modules (부하평형 듀얼 모듈로 구성된 고효율 스위치 모드 라인 트랜스포머(SMLT))

  • Kim, Jin-Hong;Yang, Jung-Woo;Jang, Du-Hee;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.188-194
    • /
    • 2020
  • This paper presents a high-efficiency Switch Mode Line Transformer (SMLT) composed of load-shared dual modules, which is based on the AC/AC LLC resonant converter. Given that the conventional adaptor is usually composed of two power stages, namely, the PFC and DC/DC converters, its system size can be increased according to the output power. However, given that the proposed SMLT can separate the PFC converter from the adaptor, the size reduction of the system can be achieved. Meanwhile, the SMLT with a single module has the limit of the size reduction because of a high resonant current. Thus, it can be configured with dual or multiple modules to reduce the resonant current. Then, their load sharing can be guaranteed by only the proposed transformer structure without an extra current controller. The validity of the proposed converter is proven through a 850-W prototype.

The Design of PFC Converter based on Digital Controller (디지털 제어기를 이용한 PFC 컨버터의 설계)

  • Lee, Hyeok-Jin;Ju, Jeong-Gyu;Yang, O;An, Tae-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.987-990
    • /
    • 2003
  • 산업현장에서의 인터넷환경 및 원격 제어를 위한 시스템 개발에서 신뢰성이 있고 경제적이며 지능적인 Power Supply가 요구되고 있다. 최근 통신시스템의 Power Supply는 수 kA이상의 출력전류를 가지고 있으며 최소 10개 이상의 모듈로 이루어져 있다. High-End 서버 시스템과 같이 수백 개의 마이크로프로세서를 내장한 시스템은 수십 kW의 전력을 소모한다. 이들이 사용하는 Power Supply는 별도의 시스템 제어기와의 통신으로 시스템에서 발생하는 발열, 소모전력, Total Harmonic Distortion (THD)에 대한 정보를 바탕으로 시스템이 갖는 각각의 Module에 대해 효과적이고 신뢰성 있는 전력공급을 하여야 만다. Distributed Power System (DPS)에서 가장 중요만 역할을 담당하는 Power Factor Correction (PFC) AC-DC Converter의 디지털 제어는 시스템 제어기와의 통신능력을 충분히 고려하면서 DPS를 위한 적합한 솔루션을 제공할 것이다. 본 논문에서는 Digital Signal Processor (DSP)를 사용하여 PFC 제어에 필요한 전파정류전압, 입력전류, 출력전압을 계측하여 역률개선과 THD의 저감을 위한 전류의 추종을 제어하면서 이들 제어기에서의 파라미터를 PC를 통해 모니터하여 최근의 추세를 만족시킬 수 있는 시스템을 구현할 수 있을 것으로 사료된다.

  • PDF

An Integrated Circuit design for Power Factor Correction (역률 개선 제어용 집적회로의 설계)

  • Lee, Jun-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.219-225
    • /
    • 2014
  • This paper describes an IC for Power Factor Correction. It can use electrical appliances which convert power from AC to DC. The power factor can be influenced not only phase difference of voltage and current but also sudden change of current waveform. This circuit enables current wave supplied to load by close to sinusoidal and minimum phase difference of voltage and current waveform. A self oscillated 10[kHz]~100[kHz] pulse signal converted to PWM waveform and it chops rectified full wave AC power which flows to load device. The multiplier and zero current detector circuit, UVLO, OVP, BGR circuits were designed. This IC has been designed and whole chip simulation use 0.5[um] double poly, double metal 20[V] CMOS process.