Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.3.577

Input Impedance and Current Feedforward Control of Single-Phase Boost PFC Converters  

Park, Sungmin (Department of Electrical and Computer Engineering, University of Connecticut)
Park, Sung-Yeul (Department of Electrical and Computer Engineering, University of Connecticut)
Bazzi, Ali M. (Department of Electrical and Computer Engineering, University of Connecticut)
Publication Information
Journal of Power Electronics / v.15, no.3, 2015 , pp. 577-586 More about this Journal
Abstract
The combination of voltage feedforward and feedback control is a conventional approach for correcting the power factor in single-phase ac-dc boost converters. The feedback duty ratio increases significantly with an increase of the line frequency and input inductance. Therefore, the performance of the conventional approach is highly dependent on the bandwidth of the feedback controller. As a result, the input power quality can be significantly exacerbated due to uncompensated duty ratios if the feedback controller is limited. This paper proposes an input impedance and current feedforward control method to reduce the control portion of the feedback controller. The findings in this paper are 1) the theoretical derivation and analysis of variations of line frequency and input inductance on a power factor correction approach, 2) guaranteed consistent performance in a wide range of conditions, and 3) that a low switching frequency can be utilized by the proposed method. A MATLAB/Simulink model and a 1.2kW dual boost converter are built to demonstrate the effectiveness of the proposed method.
Keywords
Ac-dc boost converter; Dual boost PFC converter; Feedforward control; Power Factor Correction (PFC);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. H. Cho and J. S. Lai, “Digital plug-in repetitive controller for single-phase bridgeless PFC converters,” IEEE Trans. Power Electron., Vol. 28, No. 1, pp. 165-175, Jan. 2013.   DOI   ScienceOn
2 H. J. Kim, G. S. Seo, B. H. Cho, and H. S. Choi, “A simple average current control with on-time doubler for multiphase CCM PFC converter,” IEEE Trans. Power Electron., Vol. 30, No. 3, pp. 1683-1693, Mar. 2015.   DOI   ScienceOn
3 V. M. Lopez, F. J. Azcondo, A. de Castro, and R. Zane, “Universal digital controller for boost CCM power factor correction stages based on current rebuilding concept,” IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3818-3829, Jul. 2014.   DOI   ScienceOn
4 A. Sanchez, A. de Castro, V. M. Lopez, F. J. Azcondo, and J. Garrido, “Single ADC digital PFC controller using precalculated duty cycles,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 996-1005, Feb. 2014.   DOI   ScienceOn
5 M. Pahlevani, P. Shangzhi, S. Eren, A. Bakhshai, and P. Jain, “An adaptive nonlinear current observer for boost PFC AC/DC converters,” IEEE Trans. Ind. Electron., Vol. 61, No. 12, pp. 6720-6729, Dec. 2014.   DOI   ScienceOn
6 C. L. Nguyen, H. H. Lee, and T. W. Chun, “A simple grid voltage-sensorless control scheme for PFC boost converters,” Journal of Power Electronics, Vol. 14, No. 4, pp. 712-721, Jul. 2014.   DOI   ScienceOn
7 D. M. Mitchell, "AC-DC Converter having an improved power factor," U.S. Patent 4412277 A, Oct. 25, 1983.
8 J. Chen, A. Prodić, R. W. Erickson, and D. Maksimović, “Predictive digital current programmed control,” IEEE Trans. Power Electron., Vol. 18, No. 1, Pt. 2, pp. 411-419, Jan. 2003.   DOI   ScienceOn
9 P. Athalye, D. Maksimovic, and R. W. Erickson, "DSP implementation of a single-cycle predictive current controller in a boost PFC rectifier," in Proc. IEEE Appl. Power Electron. Conf. Expo., pp. 837-842, 2005.
10 D. M. Van de Sype, K. De Gusseme, A. P. M. Van den Bossche, and J. A. Melkebeek, “Duty-ratio feedforward for digitally controlled boost PFC converters,” IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 108-115, Feb. 2005.   DOI   ScienceOn
11 L. Roggia, F. Beltrame, J. E. Baggio, and J. R. Pinheiro, “Digital current controllers applied to the boost power factor correction converter with load variation,” IET Power Electron., Vol. 5, No. 5, pp.532-541, May 2012.   DOI   ScienceOn
12 K. P. Louganski and J.-S. Lai, “Current phase lead compensation in single-phase PFC boost converters with a reduced switching frequency to line frequency ratio,” IEEE Trans. Power Electron., Vol. 22, No. 1, pp. 113-119, Jan. 2007.   DOI   ScienceOn
13 S. Y. Park, C. L. Chen, J.-S. Lai, and S. R. Moon, “Admittance compensation in current loop control for a grid-tie LCL fuel cell inverter,” IEEE Trans. Power Electron., Vol. 23, No. 4, pp. 1716-1723, Jul. 2008   DOI   ScienceOn
14 M. Chen and J. Sun, “Feedforward current control of boost single-phase PFC converters” IEEE Trans. Power Electron, Vol. 21, No. 2, pp. 338-345, Mar. 2006.   DOI   ScienceOn
15 G. G. Park, K. Y. Kwon, and T. W. Kim, “PFC dual boost converter based on input voltage estimation for DC inverter air conditioner,” Journal of Power Electronics, Vol. 10, No. 3, pp. 293-299, May 2010.   DOI   ScienceOn
16 B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality ac-dc converters,” IEEE Trans. Ind. Electron., Vol. 50, No. 5, pp. 962-981, Oct. 2003.   DOI   ScienceOn
17 D. Maksimović, Y. Jang, and R. W. Erickson, “Nonlinear-carrier control for high-power-factor boost rectifiers,” IEEE Trans. Power Electron., Vol. 11, No. 4, pp. 578-584, Jul. 1996.   DOI   ScienceOn
18 M. M. Jovanovic and Y. Jang, “State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications – An overview,” IEEE Trans. Ind. Electron., Vol. 52, No. 3, pp. 701-708, Jun. 2005.   DOI   ScienceOn
19 B. Singh and S. Singh, “Single-phase power factor controller topologies for permanent magnet brushless DC motor drives,” IET Power Electron., Vol. 3, No. 2, pp. 147-175, Mar. 2010.   DOI   ScienceOn
20 J. G Kassakian and T. M. Jahns, “Evolving and emerging applications of power electronics in systems,” IEEE J. Emerg. Sel. Topics Power Electron., Vol. 1, No. 2, pp. 47-58, Jun. 2013.   DOI   ScienceOn
21 Y. Notohara, T. Suzuki, T. Endo, H. Umeda, A. Okuyama, Y. Funayama, and K. Tamura, “Controlling power factor correction converter for single-phase AC power source without line voltage sensor,” in Proc. Int. Power Elect. Conf. (IPEC), pp. 431-436, 2010.
22 B. A. Mather and D. Maksimović, “A simple digital power-factor correction rectifier controller,” IEEE Trans. Power Electron., Vol. 26, No. 1, pp. 9-19, Jan. 2011.   DOI   ScienceOn
23 J. Chiang, B. Liu, and S. Chen, “A simple implementation of nonlinear-carrier control for power factor correction rectifier with variable slope ramp onfield-programmable gate array,” IEEE Trans. Ind. Informat., Vol. 9, No. 3, pp. 1322-1329, Aug. 2013.   DOI   ScienceOn
24 S. M. Park and S. Y. Park, "Input impedance and current feedforward control for leading-lagging phase admittance cancellation in the AC-DC boost converter," in Proc. IEEE Appl. Power Electron. Conf. Expo., pp. 1912-1919, 2013.
25 F. Musavi, W. Eberle, and W. G. Dunford, “A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Trans. Ind. Appl., Vol. 47, No. 4, pp. 1833-1843, Jul./Aug. 2011.   DOI   ScienceOn
26 L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., Vol. 23, No. 3, pp. 1381-1390, May 2008.   DOI   ScienceOn
27 J. Sun, “Input impedance analysis of single-phase PFC converters,” IEEE Trans. Power Electron., Vol. 20, No. 2, pp. 308-314, Mar. 2005.   DOI   ScienceOn
28 K. I. Hwu, H. W. Chen, and Y. T. Yau, “Fully digitalized implementation of PFC rectifier in CCM without ADC,” IEEE Trans. Power Electron, Vol. 27, No. 9, pp. 4021-4029, Sep. 2012.   DOI   ScienceOn