• Title/Summary/Keyword: AC-DC Conversion

Search Result 244, Processing Time 0.026 seconds

Switched Inductor Z-Source AC-DC Converter

  • Sedaghati, Farzad;Hosseini, Seyed Hossein;Sarhangzadeh, Mitra
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.67-76
    • /
    • 2012
  • Due to the increasing amount of applications of power electronic ac-dc converters, it is necessary to design a single-stage converter that can reliably perform both buck and boost operations. Traditionally, this can be achieved by double-stage conversion (ac/dc-dc/dc) which ultimately leads to less efficiency and a more complex control system. This paper discusses two types of modern ac-dc converters. First, the novel impedance-source ac-dc converter, abbreviated as custom Z-source rectifier, is analyzed; and then, switched inductor (SL) Z-source ac-dc converter is proposed. This paper describes the Z-source rectifiers' operating principles, the concepts behind them, and their superiorities. Analysis and simulation results show that the proposed custom Z-source rectifier can step up and step down voltage; and the main advantage of the SL Z-source ac-dc converter is its high step-up capability. Low ripple of the output dc voltage is the other advantage of the proposed converters. Finally, the SL Z-source ac-dc converter is compared with the custom Z-source ac-dc converter.

Deadbeat Direct Active and Reactive Power Control of Three-phase PWM AC/DC Converters

  • Gandomkar, Ali;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1634-1641
    • /
    • 2018
  • This study focuses on a high-performance direct active and reactive power controller design that is successfully applicable to three-phase pulse width modulation (PWM) AC/DC converters used in renewable distributed energy generation systems. The proposed controller can overcome the sluggish transient dynamic response of conventional controllers to rapid power command changes. Desired active and reactive powers can be thoroughly obtained at the end of each PWM period through a deadbeat solution. The proposed controller achieves an exact nonlinear cross-coupling decoupling of system power without using a predefined switching table or bang/bang hysteresis control. A graphical and analytical analysis that naturally leads to a control voltage vector selection is provided to confirm the finding. The proposed control strategy is evaluated on a 3 kW PWM AC/DC converter in the simulation and experiment.

Modeling of Grid-connected Wind Energy Conversion System Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 계통연계형 풍력발전시스템 모델링)

  • Kim, Seul-Ki;Kim, Eung-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.320-322
    • /
    • 2002
  • The paper presents an electrical model of a grid-connected wind energy conversion system (WECS) with a variable speed drive, a fixed pitch angle, a synchronous generator as a wind generator and AC-DC-AC conversion scheme for simulating dynamic behaviors and performance responding to varying wind speed input. The electric output of the WECS is controlled by the AC-DC-AC conversion scheme, the objective of which is to capture the maximum active power under varying wind conditions and to keep the voltage of WECS terminal bus at a specific level. Aerodynamic models are used to incorporate the power characteristics to wind speed. The modeling and simulation of the WECS are realized on PSCAD/EMTDC environment.

  • PDF

High-Efficiency DC-DC Converter with Improved Dynamic Response Characteristics for Modular Photovoltaic Power Conversion (모듈형 태양광 발전을 위한 개선된 동적응답 특성을 지닌 고효율 DC-DC 컨버터)

  • Choi, Jae-Yeon;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.54-62
    • /
    • 2013
  • This paper proposes a high-efficiency DC-DC converter with improved dynamic response characteristics for modular photovoltaic power conversion. High power efficiency is achieved by reducing switching power losses of the DC-DC converter. The voltage stress of power switches is reduced at primary side. Zero-current switching of output diodes is achieved at secondary side. A modified proportional and integral controller is suggested to improve the dynamic responses of the DC-DC converter. The performance of the proposed converter is verified based on a 200 [W] modular power conversion system including the grid-tied DC-AC inverter. The proposed DC-DC converter achieves the efficiency of 97.9 % at 60 [V] input voltage for a 200 [W] output power. The overall system including DC-DC converter and DC-AC inverter achieves the efficiency of 93.0 % when 200 [W] power is supplied into the grid.

Power Conversion System for Electric Power Take-off of Agricultural Electric Vehicle (농업용 전기차량의 전기식 동력인출장치용 전력변환시스템)

  • Kwak, Bongwoo;Kim, Jonghoon
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.994-1002
    • /
    • 2019
  • In this paper, we propose the development of a power conversion system for electric power take-off (e-PTO) of agricultural electric vehicles. Most e-PTOs use commercial power $220V_{AC}$. A bidirectional power conversion system having a two-stage structure consisting of a DC-DC converter and a DC-AC inverter for supplying a high output voltage using a low battery voltage of an agricultural electric vehicle is suitable. we propose a power conversion system consisting of the one-stage dual active bridge (DAB) converter and the two-stage bidirectional full bridge inverter. In addition, we propose a soft start algorithm for reducing the inrush current generated by the link capacitor charging during the initial operation. A 3kW prototype system and its corresponding algorithms have been implemented to verify its effectiveness through experiments.

A New Single-Stage PFC AC/DC Converter with Low Link-Capacitor Voltage

  • Lee, Byoung-Hee;Kim, Chong-Eun;Park, Ki-Bum;Moon, Gun-Woo
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.328-335
    • /
    • 2007
  • A conventional Single-Stage Power-Factor-Correction (PFC) AC/DC converter has a link capacitor voltage problem under high line input and low load conditions. In this paper, this problem is analyzed by using the voltage conversion ratio of the DC/DC conversion cell. By applying this analysis, a new Single-Stage PFC AC/DC converter with a boost PFC cell integrated with a Voltage-Doubler Rectified Asymmetrical Half-Bridge (VDRAHB) is proposed. The proposed converter features good power factor correction, low current harmonic distortions, tight output regulations and low voltage of the link capacitor. An 85W prototype was implemented to show that it meets harmonic requirements and standards satisfactorily with near unity power factor and high efficiency over universal input.

DC Characteristics Analysis of Various AC loads for Hybrid Distribution (하이브리드 급전을 위한 다양한 가정용 교류부하의 직류특성연구)

  • Lee, Young-Jin;Han, Dong-Ha;Choi, Jung-Muk;Jeong, Byong-Hwan;Kim, Dong-Jin;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.207-217
    • /
    • 2010
  • Recently, the use of DC power increased due to the increased use of digital load. Power factor of input current decrease and input current harmonics increase, and conversion loss which is occurred in the AC / DC converter is a problem to provide the proper DC voltage to the device equipped with an internal AC / DC converter. Hybrid system supplies the AC power and DC power to AC load (motor load and the transformer load) and DC loads (computers, TV, LED fluorescent light) at the same time it supplies the renewable energy and utility energy taken power from Utility to user for improving the efficiency and renewable energy improvements in ease of use. This paper studies DC characteristics of traditional AC load for Hybrid distributions.

A Study on AC/DC Converter Design of High Efficiency for Inverter Resistance Welder (인버터 저항용접기의 전력효율 향상을 위한 AC/DC 컨버터 설계에 관한 연구)

  • Kwak, D.K.;Jung, W.S.;Kang, W.C.
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.40-41
    • /
    • 2016
  • The inverter resistance welder requires AC/DC converter of high efficiency because the converter changes a commercial ac power source to low voltage dc power source. Harmonic components that occur in the conversion process of converter decrease system power factor and deal great damage in electric power system. To improve such problems, this paper proposes a high efficiency AC/DC converter for inverter resistance welder. The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit. As a result, the proposed AC/DC converter obtains low switching power loss and high efficiency.

  • PDF

Simulation of DC Microgrid with PV Generation (태양광 발전이 연계된 DC 마이크로 그리드의 시뮬레이션)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.267-273
    • /
    • 2017
  • In recent years, there is an increasing demand for DC microgrid because the digital load due to DC increases and the efficiency of the distribution system increases due to loss of conversion losses and conversion stages due to reactive power compared to AC distribution. Currently, with the support of the KEPRI, the development of an electronic large-capacity circuit breaker for DC distribution protection, which has been underway since 2016, is proceeding. In this paper, as a part of this project, we modeled the DC microgrid connected with PV using PSCAD. The converter station, AC/DC converter control, PV and MPPT controller are designed. In order to evaluate the performance of the modeled DC microgrid, it is examined whether the voltage is adjusted according to the load variation.

A Study on the Design of Step Up DC-DC Converter and Parallel Operation (승압형 DC-DC 컨버터의 설계 및 병렬운전에 관한 연구)

  • 서광덕;홍찬욱;설승기;박민호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.6
    • /
    • pp.579-587
    • /
    • 1992
  • This paper is to study on the step-up DC-DC converter for power system which yields output characteristics of low voltage and high current, such as fuel cell generation system. DC-AC-DC scheme is suggested for high ratio of voltage conversion. Three phase MOSFET-SPWM inverter is adopted for intermediate AC conversion and inverter output frequency is chosen at 400[Hz] in order to reduce the size of magnetic circuit and DC filter. Since control strategy which combines voltage controller with current controller in parallel is used, good output performance is obtained both in steady state and in transient state like load variation, not only in single unit operation but also in parallel operation.