• Title/Summary/Keyword: AC-AC power converter

Search Result 1,180, Processing Time 0.04 seconds

A Novel Variable-Speed Renewable-Energy Generation System of Induction Generator and PWM Converter for Small-Scale Hybrid Power Applications

  • Ahmed, Tarek;Nishida, Katsumi;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1339-1342
    • /
    • 2005
  • This paper presents a simple AC-DC power conditioner for a squirell-cage induction generator(IG) operating under variable shaft speeds. The necessary reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM power converter size. A simple control compensating for changes in the electrical loads as well as the variation in speed was developed to regulate the voltages of the IG system by controlling the rotor flux through its reactive and active currents control implementation. This proposed power conditioning scheme can be used efficiently as a wind power generation system where the output voltage of the IG is maintained constant voltage despite the variable frequency and the DC bus voltage of the PWM converter can be used for either DC applications such as battery charging or AC power applications with 60/50 Hz by connecting a stand alone inverter. The experimental and simulated operating performance results of a 5 kW IG scheme at various speeds and leads are presented.

  • PDF

Development of PWM Converter System for Solar Cell Silicon Ingot Glowing 120kW 3kA (태양전지 실리콘 결정 성장용 120kW 3kA PWM 컨버터 시스템 개발)

  • Kim, Min-Huei;Park, Young-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.125-130
    • /
    • 2014
  • This paper is research result for a development of solar cell silicon ingot glowing(SCSIG) PWM converter system for 120[kW] 3[kA]. The system include 3-phase AC-DC rectifier diode converter of input voltage AC 460[V] and 60[Hz], DC-AC single phase full bridge PWM inverter of high frequency, AC-DC single-phase full wave rectifier using center-tapped of transformer for low voltage 50[V] and large current 3,000[A], carbon resistor load 0.2 [$m{\Omega}$]. PWM switching frequency for IGBT inverter control set 15KHz. The suggested researching contents are designed data sheets of power converter system, PSIM simulation, operating characteristics and analysis results of developed SCSIG system.

A New Partial Resonant Switching $3\phi$ Boost Converter with High Efficiency Using Lossless Snubber (새로운 무손실 스너버를 이용한 부분공진형 고효율 $3\phi$ AC-DC 부스터 컨버터)

  • 전종함;서기영;이현우
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.9
    • /
    • pp.118-125
    • /
    • 1997
  • This paper proposed a new partial resonant 3.PHI. AC-DC boost converter of high efficiency using lossless snubber. The proposed converter, DCM (Discontinuous Current Mode) has a merit of simple controlled circuit because the input current control discontinuously. But turned off switching loss and stress of the switching device increase when the switch turned off at the peak of current. Therefore, the paper improves efficiency by adopting the PRS$^{2}$(Partial Resonant Soft Switching) in 3.PHI. AC-DC boost converter and makes the unity power factor. The PRS$^{2}$ is reduced a current/voltage stresses of switching devices. Also, a DCMPRS$^{2}$M(Discontinuous Conduction Mode Partial Resonant Soft Switching Method) appear the current and voltage equation of this circuit. The paepr examine in a 3.PHI. AC-DC boost converter and show the result of that.

  • PDF

Development of PWM Converter System for Sapphire Silicon Ingot Glowing of 80kW 10kA (사파이어 실리콘 결정 성장용 80kW 10kA PWM 컨버터 시스템 개발)

  • Kim, Min-Huei;Park, Young-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.33-41
    • /
    • 2014
  • This paper is research result for a development of sapphire silicon ingot glowing(SSIG) PWM converter system for 80kW 10kA. The system include 3-phase AC-DC diode rectifier of input voltage AC 380V and 60Hz, DC-AC single phase full bridge PWM inverter of high frequency, AC-DC single-phase full wave rectifier using center-tapped of transformer for low voltage 8.0V and large current 10,000A of output specification, tungsten resistor load 0.1[$m{\Omega}$]. PWM switching frequency for IGBT inverter control set 30kHz. The suggested researching contents are designed data sheets of power converter system, PSIM simulation, operating characteristics and analysis results of developed SSIG system. This paper propose

High Power Factor High Efficiency PFC AC/DC Converter for LCD Monitor Adapter (LCD 모니터의 어댑터를 위한 고역률 고효율 PFC AC/DC 컨버터)

  • Park K. H.;Kim C. E.;Youn M. J.;Moon G. W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.85-89
    • /
    • 2003
  • Many single-stage PFC(power-facto.-correction) ACHC converters suffer from the high link voltage at high input voltage and light load condition. In this paper, to suppress the link voltage, a novel high power factor high efficiency PFC AC/DC converter is proposed using the single controller which generates two gate signals so that one of them is used far gate signal of the flyback DC/DC converter switch and the other is applied to the Boost PFC stage. A 130w prototype for LCD monitor adapter with universal input $(90-265V_{rms})$ and 19.5V 6.7A output is implemented to verify the operational principles and performances. The experimental results show that the maximum link voltage stress is about 450V at 270Vac input voltage. Moreover, efficiency and power factor are over $84\%$ and 0.95, respectively, under the full load condition.

  • PDF

A Study of AC-DC PWM Full-Bridge Integrated Converter Topologies

  • Gerry, Moschopoulos;Praveen Jain
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • Two AC-DC PWM full-bridge converters that can input current to improve input power factor while performing dc-dc conversion are investigated in this paper. Both converters are simple in that they are similar to the standard PWM full-bridge converter with a diode rectifier/LC low-pass filter input, and both can operate with a simple method of PWM control. In the paper, the operation of the converters is explained and their steady-state characteristics are discussed. The feasibility of the converters and their ability to meet EN61000-3-2 Class D Standards for electrical equipment are shown with results obtained from experimental prototypes. The performance of both converters in terms of dc bus voltage level, input power factor and efficiency is compared and discussed.

  • PDF

Development of Inter-link Converter for Power Transmission between Heterogeneous Systems (이종 계통 간의 전력전달을 위한 Inter-link 컨버터 개발)

  • Kim, Sun-Pil;Kim, Kuk-hyeon;Lee, Chang-ho;Le, Tuan-Vu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.111-119
    • /
    • 2022
  • This paper is about power transfer between heterogeneous systems in zero-energy buildings. Currently, electricity used in buildings, from renewable energy generation power in buildings, consists of alternating current networks. In order to use electricity, alternating current must be converted to direct current, which typically results in a loss of 10%. In order to solve this problem, research is needed to reduce power loss as much as possible by implementing both a DC network and an AC network in a zero-energy building. Therefore, in this paper, an inter-link converter capable of bidirectional power transfer between DC and AC networks applied to zero-energy buildings is developed. The structure of the inter-link converter to be developed was proposed and its feasibility was verified through simulations and experiments.

Single-Stage High Power Factor AC/DC Two-Switch Forward Converter (단일전력단 고역률 AC/DC Two-Switch Forward 컨버터)

  • Bae, Jin-Yong;Kim, Yong;Kwon, Soon-Do;Lee, Kyu-Hoon;Gye, Sang-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.169-172
    • /
    • 2006
  • This paper presents the single-stage High Power Factor AC/DC Two-Switch Forward Converter (TSFC). Recently, due to growing concern about the harmonic pollution of power distribution systems and the adoption of standards such as ICE 61000-3-2 and IEEE 519, There is a need to reduce the harmonic contents of AC line currents of power supplies. This research proposed the single-stage two switch forward circuit for low voltage and high current output. The principle of operation, feature and design considerations are illustrated and verified through the simulation with a 200W(5V, 40A) 200kHz MOSFET based experimental circuit.

  • PDF

Design and Control of DC/AC Converters in Parallel with Diode Rectifiers for Regenerative Applications

  • Gao, Zhigang;Li, Rui;Lu, Qi
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1071-1087
    • /
    • 2017
  • This paper introduces a DC/AC converter, which can be connected in parallel with a diode rectifier for regenerative applications. The DC/AC converter is supposed to transmit regenerative energy to the power grid when a motor is braking. Isolation transformers are not needed in the topology, which can reduce the size and cost. An analysis of the zero-order current existing in the system is carried out. In addition, algorithms to minimize the zero-order current, control the power factor and keep the DC bus voltage stable are discussed. A 55kW industrial prototype is built to verify the proposed analysis and control strategies.

A CMOS Interface Circuit for Vibrational Energy Harvesting with MPPT Control (MPPT 제어 기능을 갖는 진동에너지 수확을 위한 CMOS 인터페이스 회로)

  • Yang, Min-Jae;Yoon, Eun-Jung;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.45-53
    • /
    • 2016
  • This paper presents a CMOS interface circuit for vibration energy harvesting with MPPT (Maximum Power Point Tracking). In the proposed system a PMU (Power Management Unit) is employed at the output of a DC-DC boost converter to provide a regulated output with low-cost and simple architecture. In addition an MPPT controller using FOC (Fractional Open Circuit) technique is designed to harvest maximum power from vibration devices and increase efficiency of overall system. The AC signal from vibration devices is converted into a DC signal by an AC-DC converter, and then boosted through the DC-DC boost converter. The boosted signal is converted into a duty-cycled and regulated signal and delivered to loads by the PMU. A full-wave rectifier using active diodes is used as the AC-DC converter for high efficiency, and a DC-DC boost converter architecture using a schottky diode is employed for a simple control circuitry. The proposed circuit has been designed in a 0.35um CMOS process, and the designed chip occupies $915{\mu}m{\times}895{\mu}m$. Simulation results shows that the maximum power efficiency of the entire system is 83.4%.