DOI QR코드

DOI QR Code

Design and Control of DC/AC Converters in Parallel with Diode Rectifiers for Regenerative Applications

  • Gao, Zhigang (School of Automation, Beijing Institute of Technology) ;
  • Li, Rui (School of Automation, Beijing Institute of Technology) ;
  • Lu, Qi (School of Automation, Beijing Institute of Technology)
  • Received : 2016.12.06
  • Accepted : 2017.03.15
  • Published : 2017.07.20

Abstract

This paper introduces a DC/AC converter, which can be connected in parallel with a diode rectifier for regenerative applications. The DC/AC converter is supposed to transmit regenerative energy to the power grid when a motor is braking. Isolation transformers are not needed in the topology, which can reduce the size and cost. An analysis of the zero-order current existing in the system is carried out. In addition, algorithms to minimize the zero-order current, control the power factor and keep the DC bus voltage stable are discussed. A 55kW industrial prototype is built to verify the proposed analysis and control strategies.

Keywords

References

  1. F. Ibanez, J. Vadillo, M. M. Maiza, and J. M. Echeverria, "30kW DC-DC converters with regenerative mode for electric cars," Journal of Power Electronics, Vol. 12, No. 2, pp. 233-241, Mar. 2012. https://doi.org/10.6113/JPE.2012.12.2.233
  2. B. Lee, D. Shin, H. Song, H. Heo, and H. Kim, "Development of an advanced hybrid energy storage systemfor hybrid electric vehicles," Journal of Power Electronics, Vol. 9, No. 1, pp. 51-60, Jan. 2009.
  3. S. S. Williamson, S. C. Rimmalapudi, and A. Emadi, "Electrical modeling of NE sources and energy storage devices," Journal of Power Electronics, Vol. 4, No. 2, pp. 117-126, Apr. 2004.
  4. H. Kakigano, Y. Miura, and T. Ise, "Low-voltage bipolar-type DC microgrid for super high quality distribution," IEEE Trans. Power Electron., Vol. 25, No. 12, pp. 3066-3075, Dec. 2010. https://doi.org/10.1109/TPEL.2010.2077682
  5. K. M. Hu, P. H. Yi, and C.M Liaw, "An EV SRM drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities," IEEE Trans. Ind. Electron., Vol. 62, No. 8, pp. 4714-4727, Aug. 2015. https://doi.org/10.1109/TIE.2015.2396873
  6. Z. Salam, "Bidirectional high-frequency link inverter with deadbeat control," Journal of Power Electronics, Vol. 9, No. 5, pp. 726-735, Sept. 2009.
  7. Y. Xu, Q. Zhang, and K. Deng, "One-cycle control strategy for dual-converter three-phase PWM rectifier under unbalanced grid voltage conditions," Journal of Power Electronics, Vol. 15, No. 1, pp. 268-277, Jan. 2015. https://doi.org/10.6113/JPE.2015.15.1.268
  8. M. Vasiladiotis and A. Rufer, "Dynamic analysis and state feedback voltage control of single-phase active rectifiers with DC-link resonant filters," IEEE Trans. Power Electron., Vol. 29, No. 10, pp. 5620-5633, Oct. 2014. https://doi.org/10.1109/TPEL.2013.2294909
  9. M. Hedayati, A. Acharya, and V. John, "Common-mode and differential-mode active damping for PWM rectifiers," IEEE Trans. Power Electron., Vol. 29, No. 6, pp. 3188-3200, Jun. 2014. https://doi.org/10.1109/TPEL.2013.2274102
  10. M. Hedayati, A. Acharya, and V. John, "Common mode filter design for PWM rectifier based motor drives," IEEE Trans. Power Electron., Vol. 28, No. 11, pp. 5364-5371, Nov. 2013. https://doi.org/10.1109/TPEL.2013.2238254
  11. M. A. Khan, I. Husain, and Y. Sozer, "Integrated electric motor drive and power electronics for bidirectional power flow between the electric vehicle and DC or AC grid," IEEE Trans. Power Electron., Vol. 28, No. 12, pp. 5774-5783, Dec. 2013. https://doi.org/10.1109/TPEL.2013.2258471
  12. M. Kwon, J. Park, and S. Choi, "A bidirectional three-phase push-pull converter with dual asymmetrical PWM method," IEEE Trans. Power Electron., Vol. 31, No. 3, pp. 1887-1895, Mar. 2016. https://doi.org/10.1109/TPEL.2015.2431273
  13. H-C Chen and J-Y Liao, "Bidirectional current sensorless control for the full-bridge AC/DC converter with considering both inductor resistance and conduction voltages," IEEE Trans. Power Electron., Vol. 29, No. 4, pp. 2071-2082, Apr. 2014. https://doi.org/10.1109/TPEL.2013.2265323
  14. T. Isobe, K. Kato, N. Kojima, and R. Shimada, "Soft-switching single-phase grid-connecting converter using DCM operation and a turn-off snubber capacitor," IEEE Trans. Power Electron., Vol. 29, No. 6, pp. 2922-2929, Jun. 2014. https://doi.org/10.1109/TPEL.2013.2274390
  15. L. Chen, C. S. Hu, Q. Zhang, K. Zhang, and I. Batarseh, "Modeling and triple-loop control of zvs grid-connected DC/AC converters for three-phase balanced microinverter application," IEEE Trans. Power Electron., Vol. 30, No. 4, pp. 2010-2023, Apr. 2015. https://doi.org/10.1109/TPEL.2014.2329278
  16. M. K. Ghartemani, "Universal integrated synchroni- zation and control for single-phase DC/AC converters," IEEE Trans. Power Electron., Vol. 30, No. 3, pp. 1544-1557, Mar. 2015. https://doi.org/10.1109/TPEL.2014.2304459
  17. S. Eren, M. Pahlevaninezhad, A. Bakhshai, and P. K. Jain, "Composite nonlinear feedback control and stability analysis of a grid-connected voltage source inverter with LCL filter," IEEE Trans. Ind. Electron., Vol. 60, No. 11, pp. 5059-5074, Nov. 2013. https://doi.org/10.1109/TIE.2012.2225399
  18. B. Wen, D. Boroyevich , R. Burgos, P. Mattavelli, and Z. Y. Shen, "Analysis of D-Q Small-Signal Impedance of Grid-Tied Inverters," IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 675-687, Jan. 2016. https://doi.org/10.1109/TPEL.2015.2398192
  19. T.-S. Lee and J.-H. Liu, "Modeling and control of a three-phase four-switch PWM voltage-source rectifier in d-q synchronous frame," IEEE Trans. Power Electron., Vol. 26, No. 9, pp. 2476-2489, Sep. 2011. https://doi.org/10.1109/TPEL.2011.2108318
  20. B. Parkhideh and S. Bhattacharya, "Vector-controlled voltage-source-converter-based transmission under grid disturbances," IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 661-672, Feb. 2013. https://doi.org/10.1109/TPEL.2012.2204071
  21. S. S. Kuruppu and N. A. Kulatunga, "D-Q current signature-based faulted phase localization for SM-PMAC machine drives," IEEE Trans. Ind. Electron., Vol. 62, No. 1, pp. 113-121, Jan. 2015. https://doi.org/10.1109/TIE.2014.2334652
  22. S. Gautam, and R. Gupta, "Switching frequency derivation for the cascaded multilevel inverter operating in current control mode using multiband hysteresis modulation," IEEE Trans. Power Electron., Vol. 29, No. 3, pp. 1480-1489, Mar. 2014. https://doi.org/10.1109/TPEL.2013.2262807
  23. H. Komurcugil, S. Ozdemir, I. Sefa, N. Altinand, and O. Kukrer, "Sliding-mode control for single-phase grid-connected LCL-filtered vsi with double-band hysteresis scheme," IEEE Trans. Ind. Electron., Vol. 63, No. 2, pp. 864-873, Feb. 2016. https://doi.org/10.1109/TIE.2015.2477486
  24. M. Merai, M. Wissem Naouar, I. Slama-Belkhodja, and E. Monmasson, "FPGA-based fault-tolerant space vector-hysteresis current control for three-phase grid-connected converter," IEEE Trans. Ind. Electron., Vol. 63, No. 11, pp. 7008-7017, Nov. 2016. https://doi.org/10.1109/TIE.2016.2581758
  25. Y. Ounejjar, K. Al-Haddad, and L. A. Dessaint, "A novel six-band hysteresis control for the packed U cells seven-level converter: Experimental validation," IEEE Trans. Ind. Electron., Vol. 59, No. 10, pp. 3808-3816, Oct. 2012. https://doi.org/10.1109/TIE.2011.2161059
  26. M. Nauman and A. Hasan, "Efficient implicit model-predictive control of a three-phase inverter with an output LC filter," IEEE Trans. Power Electron., Vol. 31, No. 9, pp. 6075-6078, Sep. 2016. https://doi.org/10.1109/TPEL.2016.2535263
  27. J. Scoltock, T. Geyer, and U. K. Madawala, "A model predictive direct current control strategy with predictive references for MV grid-connected converters with LCL-filters," IEEE Trans. Power Electron., Vol. 30, No. 10, pp. 5926-5937, Oct. 2015. https://doi.org/10.1109/TPEL.2014.2375919
  28. B. Hredzak, V. G. Agelidis, and M. Jang, "A model predictive control system for a hybrid battery-ultracapacitor power source," IEEE Trans. Power Electron., Vol. 29, No. 3, pp. 1469-1479, Mar. 2014. https://doi.org/10.1109/TPEL.2013.2262003
  29. S. Kwak and S. Mun, "Model predictive control methods to reduce common-mode voltage for three-phase voltage source inverters," IEEE Trans. Power Electron., Vol. 30, no. 9, pp. 5019-5035, Sep. 2015. https://doi.org/10.1109/TPEL.2014.2362762
  30. B. Bahrani, S. Debnath, and M. Saeedifard, "Circulating current suppression of the modular multilevel converter in a double-frequency rotating reference frame," IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 783-792, Jan. 2016. https://doi.org/10.1109/TPEL.2015.2405062
  31. G. Konstantinou, J. Pou, S. Ceballos, R. Picas, J. Zaragoza, and V. G. Agelidis, "Control of circulating currents in modular multilevel converters through redundant voltage levels," IEEE Trans. Power Electron., Vol.31, No.11, pp. 7761-7769, Nov. 2016. https://doi.org/10.1109/TPEL.2015.2512842
  32. L. B. Brahim, A. Gastli, M. Trabelsi, K. A. Ghazi, M. Houchati, and H. Abu-Rub, "Modular multilevel converter circulating current reduction using model predictive control," IEEE Trans. Ind. Electron., Vol.63, No.6, pp. 3857-3866, Jun. 2016. https://doi.org/10.1109/TIE.2016.2519320
  33. M. N. Anwar and M. Teimor, "An analytical method for selecting DC-link-capacitor of a voltage stiff inverter," 37th IAS Annual Meeting, pp. 803-810, 2002.
  34. A. M. Hava, U. Ayhan, and V. V. Aban, "A dc bus capacitor design method for various inverter applications," in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), pp. 4592-4599, Sep. 2012.