• Title/Summary/Keyword: AC withstand voltage

Search Result 46, Processing Time 0.026 seconds

A Study of Characteristic for Space Charge in CV Power Cable When Impressed DC and AC Voltage (직류 및 교류인가시 CV전력 케이블에 미치는 공간전하 특성 연구)

  • Jung, Young-Ill;Lim, Yong-Bae;Kim, Jong-Seo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1960-1962
    • /
    • 2000
  • Polyehtylene[PE] in polymer insulation materials of used power cable have carried out in abundance of experiment and study for electrical conduction. insulation breakdown. dielectric character and so on. When apply to field for power cable to make PE, application of DC withstand test to put in practice for inspection is get to effect accumulated space charge. In this paper, to make use of Pulsed Electro-Acoustic(PEA). It is analysis to take shape space charges under AC and DC voltage, clear up the point at issue for effect of DC withstand test.

  • PDF

A Safety Assessment of Splice of 6/10[kV] Class CV Cables with Different Conductor Size (다른 굵기의 6/10[kV]급 CV 케이블 직선접속부 안전성 평가)

  • Jung, Jong-Wook;Kim, Sun-Gu;Jung, Jin-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.78-84
    • /
    • 2010
  • This paper describes the safety assessment of power cable splices connecting different sized 6/10[kV] class power cables. To assess the safety, AC withstand voltage tests, partial discharge tests and impulse tests were carried out to the cable splice specimens and thermal rise due to overload and cross section of joint were examined as well. As a result, a breakdown due to the $4.5[U_0](27[kV_{ac}])$ application could not found for 5 minutes. Under $1.73[U_0](10.4[kV_{ac}])$ application, partial discharges of 4~8[pC] were detected. In impulse tests, all the specimens withstood to the standard waveforms of $75[kV_{peak}](1.2{\times}50[{\mu}s])$ without any breakdowns. In addition, the temperature on the splice rose by $3[^{\circ}C]$ when the 200[A] flew through the splice for 20minutes, however the thermal rise of $3[^{\circ}C]$ was considered due to the atmospheric temperature. After all the electrical tests, the cross section of the splice was visually examined. The conditions of the conductors of both $185[mm^2]$ and $240[mm^2]$ were good.

A Study on Insulating Design and Test of Mini-Model windings for a 22.9 kV Class HTS Transformer Reducing AC Loss (저손실 22.9 kV급 고온초전도 변압기를 위한 미니 모델 권선의 절연 설계 및 시험 연구)

  • Baek, Seung-Myeong;Cheon, Hyeon-Gweon;Nguyen, Van Dung;Kwag, Dong-Sun;Lee, Chang-Hwa;Kim, Hea-Jong;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.94-99
    • /
    • 2004
  • This paper presents experimental data from model windings with different arrangement of coil in order to provide information to design a 22.9 kV class HTS transformer. Before experiment, the composite insulation of two different type of HTS transformers are investigated. The first basic of investigation is a breakdown characteristic of liquid nitrogen and flashover characteristic on the GFRP surface under ac and impulse, The second investigation is insulation design, manufacture and test of model windings. These include a AC withstand voltage test of 50 kV rms and a lighting impulse test of 150 kV at peak.

  • PDF

Practical Design and Implementation of a Power Factor Correction Valley-Fill Flyback Converter with Reduced DC Link Capacitor Volume (저감된 DC Link Capacitor 부피를 가지는 역률 개선 Valley-Fill Flyback 컨버터의 설계 및 구현)

  • Kim, Se-Min;Kang, Kyung-Soo;Kong, Sung-Jae;Yoo, Hye-Mi;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.277-284
    • /
    • 2017
  • For passive power factor correction, the valley fill circuit approach is attractive for low power applications because of low cost, high efficiency, and simple circuit design. However, to vouch for the product quality, two dc-link capacitors in the valley fill circuit should be selected to withstand the peak rectified ac input voltage. The common mode (CM) and differential mode (DM) choke should be used to suppress the electromagnetic interference (EMI) noise, thereby resulting in large size volume product. This paper presents the practical design and implementation of a valley fill flyback converter with reduced dc link capacitors and EMI magnetic volumes. By using the proposed over voltage protection circuit, dc-link capacitors in the valley fill circuit can be selected to withstand half the peak rectified ac input voltage, and the proposed CM/DM choke can be successfully adopted. The proposed circuit effectiveness is shown by simulation and experimentally verified by a 78W prototype.

Study on the effect of DC voltage in oil-immersed transformer insulation system (DC 전압이 유입변압기 절연시스템에 미치는 영향에 관한 연구)

  • Jang, Hyo-Jae;Kim, Yong-Han;Seok, Bok-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1552-1553
    • /
    • 2011
  • The HVDC transformer which is one of the main equipments for HVDC(High Voltage Direct Current) electric power transmission systems is exposed to not only AC voltage but also the inflowing DC voltage which comes from the DC-AC converter systems. Therefore, the HVDC transformer insulation system is required to withstand the electric field stress under AC, DC and DC polarity reversal conditions. However the electric field distributions under those conditions are different because the AC electric field and DC electric field are governed by permittivity and conductivity, respectively. In this study, the changes of electric potential and electric field of conventional AC transformer insulation system under DC polarity reversal test condition were analyzed by FEM(Finite Element Method). The DC electric field stress was concentrated in the solid insulators while the AC electric field stress was concentrated in the mineral oil. In addition, the electric stress under that condition which is affected by the surface charge accumulation at the interfaces between insulators was evaluated. The stress in some parts could be higher than that of AC and DC condition, during polarity reversal test. The result of this study would be helpful for the HVDC transformer insulation system design.

  • PDF

Trend in Off-Line PD Monitoring with HVAC Testing (배전반 설비의 온라인 모니터링 및 진단의 동향)

  • Yun, Ju-Ho;Hong, Chang-Il;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.529-530
    • /
    • 2007
  • The paper considers the relation between on-line monitoring and diagnostics on the one hand and high-voltage (HV) withstand and partial discharge (PD) on-site testing on the other. HV testing supplies the basic data (fingerprints) for diagnostics. In case of warnings by on-line diagnostic systems, off-line withstand and PD testing delivers the best possible information about defects and enables the classification of the risk. Because alternating voltage (AC) is the most important test voltage, the AC generation on site is considered. Frequency tuned resonant (ACRF) test systems are best adapted to on-site conditions. They can be simply combined with PD measuring equipment. The available ACRF test systems and their application to electric power equipment -from cable systems to power transformers - is described.

  • PDF

A Study on the DC Voltage Withstand test for the Ageing of XLPE Power Cable (직류내전압 시험이 전력케이블(CV) 절연체에 미치는 영향연구)

  • Lee, Jun;Lim, Yong-Bae;Kim, Jong-Seo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.613-616
    • /
    • 1999
  • Polyehtylene[PE] in polymer insulation materials of used power cable have carried out in abundance of experiment and study for electrical conduction, insulation breakdown, dielectric character and so on. when apply to field for power cable to make PE, application of DC withstand test to put in practice for inspection is get to effect accumulated space charge. In this paper, to make use of Pulsed Electro-Acoustic(PEA), It is analysis to take shape space charge under AC and DC, clear up the point at issue for DC withstand test impressing

  • PDF

Research on Multi-layered Effect for the Insulation Design of a HTS Cable (고온초전도 케이블의 절연설계를 위한 적층효과에 관한 연구)

  • Kwag, Dong-Soon;Kim, Hae-Jong;Cho, Jeon-Wook;Kim, Hae-Joon;Kim, Jae-Ho;Cheon, Hyeon-Gweon;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.560-561
    • /
    • 2005
  • For the insulation design of a HTS cable, the withstand voltage of three kinds were proposed. One of them is the AC design withstand voltage, another is the impulse design withstand voltage, and the other is the partial discharge inception stress. However, the multi-layered effect was not considered on insulation design of a HTS cable at existent design process. Therefore in this paper, the electrical breakdown characteristics by multi-layered effect of LPP insulation paper were investigated. Based on these results, the insulation thickness of 22.9 kV class HTS cable was designed, and compared with existent design process.

  • PDF

Study on Current Conditioning Process for Improving Withstand Voltage Performance of Vacuum Interrupter (진공인터럽터의 내전압 성능 향상을 위한 전류컨디셔닝 기법 연구)

  • Cha, Young-kwang;Lee, IL-Hoi;Jeon, Ki-Beom;Jang, Ji-Hoon;Ju, Heung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.480-487
    • /
    • 2022
  • As a process to improve the insulation performance of VIs (Vacuum Interrupters), AC voltage conditioning is generally adopted by many manufacturers. Although the insulation performance is enhanced easily with AC Voltage conditioning, it has limitations when high recovery voltage is required due to high voltage rate or capacitive current switching. In particular, impurities such as oxides segregated on the electrode surface can be removed not by the energy level of the voltage conditioning but by the higher energy level achieved by the current conditioning process In this article, the current conditioning was carried out in various conditions and its validity was examined. The current conditioning was processed by changing the amplitude of applied current, arc time, the number of tests, and frequency. The insulation performance and the status of contact surface were checked as well. We concluded that as the applied charge quantity and the conditioning coverage area increase, the conditioning effect is much higher.

Implementation of Power Cable Diagnostic Simulator using VLF (VLF를 활용한 전력케이블 진단 시뮬레이터 구현)

  • Kim, Kuk;Eo, Ik-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.593-602
    • /
    • 2020
  • Power cables installed in domestic factories or underground can cause accidents depending on the manufacturing process, installation, and environmental conditions during use. When an accident occurs in a power cable, it can cause enormous economic loss and social confusion. Hence, the importance of preventive management of the cable through diagnosis is increasing to prevent it. Therefore, in this paper, a diagnostic sample cable was produced by simulating a part that could be a problem due to the installation, manufacturing defects, or deterioration of cables that can occur in the field. Dielectric loss Tangent (tan 𝛿; TD), and Partial Discharge(PD) tests were performed. Partial discharge and AC (60Hz) withstand voltage equipment using High-Frequency Current Transformer (HFCT) were applied After applying a VLF (Very Low Frequency) power supply with a frequency of 0.1Hz was applied. As a result, B and C phase defect samples at a 2.0U0 voltage through the VLF could measure the internal partial discharge in the A-phase normal sample cable from the noise at a 0.5U0 to 2.0U0 voltage. In addition, the 1.5U0 voltage was measured through the AC (60Hz) withstand voltage equipment of the commercial frequency to verify its effectiveness. Partial discharge in the run-off state was measured at a voltage of 1.0U0, and there was a risk when installing the equipment. AC power equipment showed a difficulty of movement by volume or weight. The diagnostic method, through the VLF of the quadrant state, revealed its safety and effectiveness.