• 제목/요약/키워드: AC voltage regulation

검색결과 106건 처리시간 0.04초

적응 궤환 선형화를 이용한 3상 AC/DC 전압원 컨버터 제어 (Adoptive Feedback Linearization Control of Three-Phase AC/DC Voltage-Source Converter)

  • 박영환;박장현;강문호
    • 조명전기설비학회논문지
    • /
    • 제20권3호
    • /
    • pp.62-68
    • /
    • 2006
  • 본 논문에서는 3상 AC/DC 컨버터의 적응 입출력 선형화와 영점 동특성식 제어 기법을 제안한다. 컨버터 출력 dc전압이 단위 역률을 유지하도록 회전 d-q 프레임의 q축 전류가 영의 값으로 유지되고 출력전압은 주어진 기준전압 $V_r$을 추종하도록 제어된다. 제안된 제어기법은 적응 프로세스를 이용해 파라미터 불확실성과 부하 전류 변화에 대해 견실하다. 제안된 제어 기법의 효용성과 타당성을 보이기 위해 시뮬레이션 연구가 수행되었다.

영전류 스위칭 방식의 직렬 공진형 AC/DC 컨버터를 위한 전환모드 이산 슬라이딩 제어 (Switched discrete sliding mode control for ZCS series rosonant AC to DC converter)

  • 문건우;이정훈;이대식;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1219-1226
    • /
    • 1993
  • A buck-boost zero current switched(ZCS) series resonant AC to DC converter for the DC output voltage regulation together with high power factor is proposed. The proposed single phase AC to DC converter enables a zero current switching operation of all the power devices allowing the circuit to operate at high swtiching frequencies and high power levels. A dynamic model for this Ac to DC converter is developed and an analysis for the internal operational characteristics is explored. Based on this analysis, a switched discrete sliding mode control(SDSMC) technique is investigated and its advantages over the other types of current control techniques are discussed. With the proposed control technique, the unity power factor without a current overshoot and a wide range of output voltage can be obtained.

  • PDF

식스 스텝 운전을 이용한 선박용 DC 전력 시스템의 직류단 전압 제어 (DC Bus Voltage Regulation With Six-Step Operation in Maritime DC Power System)

  • 윤종훈;손영광;설승기
    • 전력전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.263-270
    • /
    • 2021
  • Active AC/DC converters with PWM operation are utilized to regulate rectified DC bus voltage of a permanent magnet synchronous generator in the maritime DC power system. A DC bus voltage regulation strategy that exploits the six-step operation is proposed in this study. Compared with that of the PWM operation, switching loss of the converter can be significantly reduced under the six-step operation. Moreover, conduction loss can also be reduced due to the high modulation index and reduced flux-weakening current of the six-step operation. A controller is used for the proposed DC bus voltage regulation strategy to verify its validity with the simulation and experimental setup. The simulation and the experimental test results showed that the converter loss reduces to a maximum of 70% and 19%, respectively.

교류철도급전계통에 전력품질보상장치 적용에 관한 연구 (A Study on the Application of UPQC in AC Railway System)

  • 최준호
    • 조명전기설비학회논문지
    • /
    • 제18권6호
    • /
    • pp.220-229
    • /
    • 2004
  • 전기 철도계통은 기존 전력계통과 달리 단상, 대용량 부하로 필연적으로 전압강하, 전압불평형 및 고조파 왜곡 등의 전력품질의 문제가 발생한다. 최근 철도계통의 전력품질문제는 철도차량 및 시스템의 제어 및 안전 때문에 중요한 화두가 되고 있다. 이는 또한 기존 전력계통의 전력품질에도 영향을 미친다 본 논문에서는 전기철도 급전시스템에 발생하는 전력품질문제의 보상에 관한 연구를 수행하고자 한다. 이를 위해 국내 교류전기철도 표준 급전방식인 AT(Auto Transformer)급전시스템, 철도급전변압기인 스콧트 변압기(Scott Transformer), AT변압기, 철도선로 및 철도 차량부하를 모델링 하였다. 과도응답은 전자기과도해석 프로그램인 PSCAD/EMTDC를 사용하여 해석 하였다. 또한 전력품질을 보상하기위한 방안으로 급전선-전차선에 설치되는 전력품질보상기(Unified Power Quality Conditioner : UPQC)를 제안하였고 이의 성능 및 유효성을 시뮬레이션을 통하여 확인하였다.

PWM DC-AC Converter Regulation using a Multi-Loop Single Input Fuzzy PI Controller

  • Ayob, Shahrin Md.;Azli, Naziha Ahmad;Salam, Zainal
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.124-131
    • /
    • 2009
  • This paper presents a PWM dc-ac converter regulation using a Single Input Fuzzy PI Controller (SIFPIC). The SIFPIC is derived from the signed distanced method, which is a simplification of a conventional fuzzy controller. The simplification results in a one-dimensional rule table, that allows its control surface to be approximated by a piecewise linear relationship. The controller multi-loop structure is comprised of an outer voltage and an inner current feedback loop. To verify the performance of the SIFPIC, a low power PWM dc-ac converter prototype is constructed and the proposed control algorithm is implemented. The experimental results show that the SIFPIC performance is comparable to a conventional Fuzzy PI controller, but with a much reduced computation time.

Analysis and Modeling of AC-AC Switched Capacitor Converters

  • Cai, Hui;Bao, Liting;Guo, Qian;Wang, Ying;Chen, Weimin
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.24-33
    • /
    • 2019
  • A new modeling method for AC-AC switched capacitor converters (SCCs) is introduced in this study. The proposed analytical method aims to accurately describe the input-output characteristics of AC-AC SCCs and establish a mathematical model for static voltage conversion ratio and equivalent resistance, which are key performance metrics for SCCs. A quantitative analysis of converter regulation capability is addressed on the basis of the modeling method. In this analysis, the effects of the control parameters and individual components on SCCs are illustrated extensively. Component stresses, such as the peak value and transient variation of the voltage/current of the converter, are also presented. The effectiveness of the proposed method is verified by comparing it with the existing modeling method and applying it to an AC-AC SCC with a conversion ratio of three. Two 1 kW prototypes are built in a laboratory, and their experimental results exhibit good agreement with the theoretical analysis.

초퍼저항 및 de-loading 협조제어를 통한 해상풍력 연계용 HVDC시스템 DC전압 상승 억제 방안 (DC Voltage Build-Up Suppression Scheme of HVDC System for Offshore Wind Farm Connection using Chopper Resistor and de-loading)

  • 이형진;강병욱;김재철
    • 전기학회논문지
    • /
    • 제66권5호
    • /
    • pp.750-756
    • /
    • 2017
  • This paper presents a method for DC voltage control of HVDC system connection of offshore wind farms. In the event of fault in AC grid, HVDC system need to meet LVRT regulations. When HVDC system meet LVRT regulation, unbalance is caused between power input and power output for DC link. Therefore, LVRT regulation lead to DC voltage increase of HVDC system. To control the DC voltage increase, the chopper resistor can be suggested. In this paper, DC voltage suppression is proposed using chopper resistor and de-loading. The effectiveness of the chopper resistor was verified using PSCAD/EMTDC.

단위 역률을 갖는 직렬공진형 단상 정류기의 모드 변환 제어기법 (Switched Mode Control Technique for the Series Resonant Sigle-Phase Rectifier with Unity Power Factor)

  • 정영석;문건우;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.850-852
    • /
    • 1993
  • A buck-boost zero current switched(ZCS) series resonant AC to DC converter for the DC output voltage regulation together with high power factor is proposed. A dynamic model for this AC to DC converter is developed and an analysis for the internal operational characteristics is explored. With the proposed control technique, the unity power factor and the DC output voltage regulation without a current overshoot can be obtained.

  • PDF

Coordinated Voltage Control Scheme for Multi-Terminal Low-Voltage DC Distribution System

  • Trinh, Phi Hai;Chung, Il-Yop;Kim, Taehoon;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1459-1473
    • /
    • 2018
  • This paper focuses on voltage control schemes for multi-terminal low-voltage direct current (LVDC) distribution systems. In a multi-terminal LVDC distribution system, there can be multiple AC/DC converters that connect the LVDC distribution system to the AC grids. This configuration can provide enhanced reliability, grid-supporting functionality, and higher efficiency. The main applications of multi-terminal LVDC distribution systems include flexible power exchange between multiple power grids and integration of distributed energy resources (DERs) using DC voltages such as photovoltaics (PVs) and battery energy storage systems (BESSs). In multi-terminal LVDC distribution systems, voltage regulation is one of the most important issues for maintaining the electric power balance between demand and supply and providing high power quality to end customers. This paper focuses on a voltage control method for multi-terminal LVDC distribution system that can efficiently coordinate multiple control units, such as AC/DC converters, PVs and BESSs. In this paper, a control hierarchy is defined for undervoltage (UV) and overvoltage (OV) problems in LVDC distribution systems based on the control priority between the control units. This paper also proposes methods to determine accurate control commands for AC/DC converters and DERs. By using the proposed method, we can effectively maintain the line voltages in multi-terminal LVDC distribution systems in the normal range. The performance of the proposed voltage control method is evaluated by case studies.

능동 클램프 모드로 동작하는 단일 전력 AC/DC 컨버터에 의한 역률개선 (Power Factor with Single Power Stage AC/DC Converter Operated in Active-Clamp Mode)

  • 윤신용;백수현;김용;김철진;어창진
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권8호
    • /
    • pp.392-401
    • /
    • 2001
  • This paper presents the single-stage high power factor AC to DC converter operated in active-clamp mode. The proposed converter is added active-clamping circuit to boost-flyback single-stage power factor corrected power supply. The active-clamping circuit limits voltage spikes, recycles the energy trapped in the leakage inductance, and provides a mechanism for achieving soft switching of the electronic switches to reduce the switching loss. The auxiliary switch of active-clamping circuit uses the same control and driver circuit as the main switch to reduce the additional cost and size. To verify the performance of the proposed converter, a 100W converter has been designed. The proposed converter gives good power factor correction, low line current harmonic distortions, and tight output voltage regulation, as used unity power factor.

  • PDF