• Title/Summary/Keyword: AC treeing breakdown

Search Result 31, Processing Time 0.023 seconds

Long-term and Short-term AC Treeing Breakdown of Epoxy/Micro-Silica/Nano-Silicate Composite in Needle-Plate Electrodes

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.252-255
    • /
    • 2012
  • In order to characterize insulation properties of epoxy/micro-silica/nano-silicate composite (EMNC), long-term and short-term AC treeing tests were carried out undr non-uniform electric field generated between needle-plate electrodes. In a long-term test, a 10 kV (60 Hz) electrical field was applied to the specimen positioned between the electrodes with a distance of 2.7 mm in an insulating oil bath at $30^{\circ}C$, and a typical branch type electrical tree was observed in the neat epoxy resin and breakdown took place at 1,042 min after applying the 10 kVelectrical field. Meanwhile, the spherical tree with the tree length of $237{\mu}m$ was seen in EMNC-65-0.3 at 52,380 min (36.4 day) and then the test was stopped because the tree propagation rate was too low. In the short-term test, an electrial field was applied to a 3.5 mm-thick specimen at an increasing voltage rate of 0.5 kV/s until breakdown in insulating oil bath at $30^{\circ}C$ and $130^{\circ}C$, and the data was estimated by Weibull statistical analysis. The electrical insulation breakdown strength for neat epoxy resin was 1,763 kV/mm at $30^{\circ}C$, while that for EMNC-65-0.3 was 2,604 kV/mm, which was a modified value of 47%. As was expected, the breakdown strength decreased at higher test temperatures.

Dielectric Strength According to Flow Pattern in EHV Power Cable Insulation (초고압 전력케이블 절연체의 Flow Pattern에 따른 절연성능 고찰)

  • LEE, Seung-Yop;KIM, Young-Ho;LEE, Sang-Jin;KIM, Dong-Wook;CHOI, Myung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1539-1541
    • /
    • 2000
  • Insulation layers in XLPE power cables may have some patterns generated in the manufacturing process. They are called 'flow patterns' and show flow history of molten polyethylene between inner and outer semiconducting layers. Flow patterns are even seen with naked human eyes and suspected to be inhomogeniety of insulation, weakening insulation performance. Investigated in this paper is electrical treeing resistance and ac breakdown strength according to flow patterns. Experiments of electrical treeing and ac breakdown strength by means of ramp tests were conducted using newly developed electrode system with point-to-plane structure and sphere-to-sphere structure, respectively. All results were analyzed with the application of statistics, showing little differences.

  • PDF

A Study on Electrical Properties of Insulating Materials for Eco-friendly Distribution Power Cables (I) (친환경 배전급 전력케이블용 절연재료의 전기적 특성에 관한 연구 (I))

  • Lee, June-Ho;Kim, Chul-Ho;Cho, Young-Chul;Lee, Moon-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.551-556
    • /
    • 2017
  • The cross-linked polyethylene(XLPE) has been most widely used for the power cable insulating layer because of its outstanding properties such as electrical and mechanical properties. However, XLPE is unrecyclable when disposed after replacement and demolishing because it becomes thermosetting through cross-linked process. Recently, because of growing social awareness of recycling and eco-friendly, there is growing need for the development of recyclable insulating materials that can replace XLPE. Therefore, the purpose of this study is to compare the electrical properties of XLPE and recyclable thermoplastic insulating materials. To this end, we compared and analyzed the electrical properties of XLPE and group N2 through AC breakdown test, accelerated water treeing test and accelerated life test(ALT).

A Study on the Diagnosis of Treeing Breakdown and Fractal Characteristics Using the Method of Acoustic Enission (음향방출 계측법을 이용한 프랙탈 특성과 트리잉 파괴진단에 관한 연구)

  • 김성홍;심종탁;김재환
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.6
    • /
    • pp.50-56
    • /
    • 1997
  • As the purpose of the breakdown prediction of three degradation of insulating materials caused by partial discharge occurring at various defects in the polymer insulator itself and at the interfaces between electrodes and the insulating materials. Treeing due to partial discharge os one of the main causes of breakdown of the insulating materials. Recently, the necessity of establishing the way to diagnoses the aging of insulation materials and to predict of insulation breakdown become improtant. The purpose of our work are to use acoustic emission System and fractal dimension and to investigated the treeing phenomena in polymeric insulation under appliec AC voltage 11[kV] with an artificial needleshaped void(1.5[mm]) using the above system.

  • PDF

Dielectric Breakdown Characteristics of $Al_2O_3$ Filled DGEBA/MDA/SN System ($Al_2O_3$가 충전된 DGEBA/MDA/SN 계의 절연열화 특성)

  • Cho, Young-Shin;Shim, Mi-Ja;Kim, Sang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.209-211
    • /
    • 1996
  • The dielectric breakdown characteristics of DGEBA/MDA/SN system filled with $Al_2O_3$ under AC high electric field were investigated. As the filler content increased, the dielectric breakdown strength increased, but decreased at higher filler content than 5 phr. The probability of defects such as air bubbles, peel between filler and epoxy resin insulator, etc. increase proportionally to filler contents. Fillers blockade the treeing growth and relax the electric field at the tip of electrical tree and the treeing propagation rate decreases so that the strength showed higher strength at lower filler content than 5 phr.

  • PDF

Electrical Treeing Phenomena at the Interface of Conductor and Insulator (도전체와 절연체 계면에서의 전기트링 현상)

  • 조영신;심미자;김상욱
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.4
    • /
    • pp.236-242
    • /
    • 1995
  • This paper describes a study of electrical tree growth in DGEBA/MDA/SN system subjected to ac high electric field. The dielectric breakdown process, which consists of tree initiation, tree propagation and the complete puncture of the system was investigated. Dielectric breakdown always initiated from the needle tip where the electric field reinforcement is the highest. Higher temperature and voltage accelerated the tree growth and reduced the time to breakdown.

  • PDF

The Improvement of Radiation Characteristics of Low Density Polyethylene by Adding Treeing Inhibitors (I) (트리억제제 첨가에 의한 저밀도 폴리에틸렌의 내방사선성 향상 (I))

  • Kim, Ki-Yup;Lee, Chung;Ryu, Boo-Hyung;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.926-928
    • /
    • 1999
  • Treeing inhibitors of barbituric acid derivatives effects on the electrical properties of crosslinked low density polyethylene under radiation environments were investigated. The electrical parameters for tree inception voltage, AC breakdown strength, volume resistivity, capacitance and dissipation factor at 1MHz and thermoluminescence, gel content measurements were discussed as a function of irradiated dosages. From the results, barbituric acid among the treeing inhibitors was shown the best treeing and radiation resistance.

  • PDF

Variations of the Electrical Treeing and Breakdown Characteristics on LDPE Due to Gamma-ray Irradiation

  • Lee, Chung;Ryu, Boo-Hyung
    • International Journal of Safety
    • /
    • v.8 no.1
    • /
    • pp.14-17
    • /
    • 2009
  • The $Co^{60}$ $\gamma$-ray irradiation effects on the electrical and thermal characteristics of low density polyethylene crosslinked by Dicumyl peroxide (DCP) were investigated. We experimented on electrical properties as following; electrical tree inception and growing type for applying AC step voltage, AC breakdown strength, volume resistivity with increasing dosage. Also, chemical analyses were performed TGA, gel fraction. These electrical properties changed depending upon its crosslinking degree and byproducts from crosslinking reactions. Crosslinking reactions were considered causing by $\gamma$-ray irradiation and DCP had contained in low density polyethylene.

AC Breakdown Voltage Characteristics for 22.9kV Power Cable Before and After Cyclic Aging for 14days (14주기 열화에 따른 22.9kV 전력케이블의 교류파괴전압 특성분석)

  • Kim, We-Young;Heo, Jong-Cheol;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2271-2273
    • /
    • 2005
  • The cyclic aging for 14days is performed in order to remove the large amount of the volatiles contained in freshly manufactured cable. And the accelerated water treeing test(AWTT) is performed to accelerate the occurance of the water tree in the dielectric of XLPE. In this paper, we examined the AC breakdown voltage characteristics of the 22.9kV power cable before and after the cyclic aging for 14days and the AWTT. As the result, the AC breakdown voltage of the TR CNCV-W power cable is higher than that of CNCV-W and FR CNCO-W power cable.

  • PDF

Effect of an Electric Field on the AC Electrical Treeing in Various Epoxy/Reactive Diluent Systems

  • Bang, Jeong-Hwan;Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.308-311
    • /
    • 2013
  • The effect of an electric field on the ac electrical treeing in various epoxy/reactive diluent systems was studied in a needle-plate electrode geometry. Diglycidyl ether of bisphenol A (DGEBA) type epoxy was used as a base resin, and 1,4-butanediol diglycidyl ether (BDGE) or polyglycol (PG) as a reactive diluent was introduced to the DGEBA system, in order to decrease the viscosity of the DGEBA epoxy system. BDGE was acted as a chain extender, and PG acted as a flexibilizer, after the curing reaction. To measure the treeing initiation time and the propagation rate, three constant alternating currents (ac) of 10, 13 and 15 kV/4.2 mm (60 Hz) were applied to the specimen, in a needle-plate electrode arrangement, at $30^{\circ}C$ of insulating oil bath. When 10 kV/4.2 mm (60 Hz) was applied, the treeing initiation time and the propagation rate in the DGEBA system were 356 min and $1.10{\times}10^{-3}$ mm/min, respectively, those in the DGEBA/BDGE system were 150 min and $1.14{\times}10^{-3}$ mm/min, respectively. Those in the DGEBA/PG system were 469 min and $1.05{\times}10^{-3}$ mm/min, respectively. As 15 kV/4.2 mm (60 Hz) was applied, the propagation rate in the DGEBA system was $5.41{\times}10^{-3}$ mm/min, and that in the DGEBA/PG system was $1.42{\times}10^{-3}$ mm/min. These values meant that PG could be used as a reactive diluent in the DGEBA system, without the deterioration of the insulation breakdown property.