• Title/Summary/Keyword: AC solution

Search Result 404, Processing Time 0.021 seconds

A-team Based Approach for Reactive Power/Voltage Control Considering Steady State Security Assessment (정태 안전성 평가를 고려한 무효전력 전압제어를 위한 A-team기반 접근법)

  • Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.150-159
    • /
    • 1996
  • In this paper, an A-team(Asynchronous Team ) based approach for Reactive power and volage control considering static security assessment in a power system with infrastructural deficiencies is proposed. Reactive power and voltage control problem is the one of optimally establishing voltage level given several constraints such as reactive generation, voltage magnitude, line flow, and other switchable reactive power sources. It can be formulated as a mixed-integer linear programming(MILP) problem without deteriorating of solution accuracy to a certain extent. The security assessment is to estimate the relative robustness of the system in Its present state through the evaluation of data provided by security monitoring. Deterministic approach based on AC load flow calculations is adopted to assess the system security, especially voltage security. A security metric, as a standard of measurement for power system security, producting a set of discrete values rather than binary values, is employed. In order to analyze the above two problems, reactive power/voltage control problem and static security assessment problem, in an integrated fashion for real-time operations, a new organizational structure, called an A-team, is adopted. An A-team is an organization for agents which ale all autonomeus, work in parallel and communicate asynchronously, which is well-suited to the development of computer-based, multi-agent systems for operations. This A-team based approach, although it is still in the beginning stage, also has potential for handling other difficult power system problems.

  • PDF

The Study on Automatic Temperature Transmission System for the Heating pipe at Home (가정식난방배수관내의자동온도송신장치에대한연구)

  • Park, Chul-Min;Jo, Heung-Kuk;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2641-2646
    • /
    • 2009
  • The more growing on home automation system at automatic control, the more efficiency required for energy consumption and for recycling energy in near future. Heating is essential in general apartment. Heating method is two types in apartment. One uses electricity, and other one uses warm water. If use electricity, is not efficient by rise of electric charges. But, It can reduce much in expense aspect, if use warm water. When use warm water, temperature of warm water is not equal from all pipe parts. Therefore, indoor tempera can be unequal with set point. Solution of these problems is as following. Temperature sensor in warm water attach pipe. The measured temperature transmits by real time. Temperature of warm water controls in receiver side. In this paper, we propose an automatic temperature transmission system for the heating pipe at home, that is a low-power based, and supply the energy source from a small AC motor resided in bottom cement mortal. The proposed system is used in power mechanism from a collision process of water-jet using propeller water-difference and also designed a CPU module by Atmega8 at ATMEL co., Inc. and a communication module by CC1020 at Chipcon co., Inc.

The role of $Na^+-Ca^{2+}$ exchange on calcium activated chloride current in single isolated cardiac myocyte in pulmonary vein of rabbit.

  • Kim, Won-Tae;Lee, Yoon-Jin;Ha, Jeong-Mi;Han Choe;Jang, Yeon-Jin;Park, Chun-Sik;Lee, Chae-Hun m
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.37-37
    • /
    • 2003
  • We have shown the $Ca^{2+}$-activated chloride current is present in cardiac myocyte in rabbit pulmonary vein (Kim et al., 2002). This current amplitude was increased as [N $a^{+}$]$_{i}$ was increased and we suggested this chloride current may be involve in the spontaneous action potential frequency change. Since this current is activated by the increase of intracellular $Ca^{2+}$, we would like to test what is the inducer of the increase of [C $a^{2+}$]$_{i}$ between a L-type $Ca^{2+}$-current or a reverse mode of N $a^{+}$-C $a^{2+}$ exchange current. White rabbit (1.5 kg) was used and anesthetized with Ketamin (100 mg/kg). Pulmonary vein (PV) was isolated and sleeve area between left atrium and PV was dissected. Using collagenase (Worthington 0.7 mg/cc), single cardiac myocytes were isolated. In the presence of 15 mM of N $a^{+}$, three steps of voltage pulses were applied (holding potential : -40 ㎷, -80 ㎷ for 50 msec, 30 ㎷ for 5 msec, 10 ㎷ steps from -70 ㎷ to 60 ㎷). The inward and outward tail current was activated after brief 5 msec prepulse. The outward tail current was blocked by the removal of extracellular chloride substituted by glucuronic acid or by a chloride channel blocker, 5 mM 9-AC. But the inward tail current was still remained even though the amplitude was decreased. The reversal potentials were changed to the direction of the change of chloride equilibrium potential ( $E_{Cl}$ ) but the shift of equilibrium potential was not enough to match to the theoretical equilibrium potential shift. In the presence of L-type $Ca^{2+}$ channel blocker, nifedipine 1 uM, inward tail currents were greatly reduced but the outward current tail currents were still remained. In the presence of N $a^{+}$-C $a^{2+}$ exchange current blocker, 10 uM KB-R7943, the inward and outward tail currents were blocked almost completely. We tried to test the $Ca^{2+}$sensitivity of the chloride current with various [C $a^{2+}$]$_{i}$ in pipette solution from 100 nM to 1 uM but we failed to activate $Ca^{2+}$-activated chloride currents even though the cell became contracted in the presence of 1 uM $Ca^{2+}$. From these results, we could conclude that the increase of [C $a^{2+}$]$_{i}$ to activate the outward $Ca^{2+}$-activated chloride current was mainly induced by the activation of the reverse mode of N $a^{+}$-C $a^{2+}$ exchanger, But for the increase of [C $a^{2+}$]$_{i}$ to activate the inward tail current, L-type $Ca^{2+}$ current may be the major provoking current. Since the cytosolic increase of [C $a^{2+}$]$_{i}$ through pipette solution have failed to activate $Ca^{2+}$-activated chloride current, this chloride current may have very low $Ca^{2+}$ sensitivity or a comparmental increase $Ca^{2+}$ such as in subsarcolemmal space may activate the chloride current. Since there are several reports and models that the increase of $Ca^{2+}$ in subsarcolemmal space would be over several to tens of uM, both possibility may be valid together.uM, both possibility may be valid together.

  • PDF

Effect of Aprotinin on Changes in Plasma Thromboxane $B_2$ and Endothelin-1 Concentratin after Extracorporeal Circulation (체외순환후 혈중 Thromboxane $B_2$와 Endothelin-1 농도 변화에 미치는 Aprotinin의 효과)

  • Lim, Cheong;Yun, Tae-jin;Kim, Yeon-seung;Kim, Seung-hoo;Lee, Jae-dam;Rho, Joon-Ryang;Song, Meong-Gun
    • Journal of Chest Surgery
    • /
    • v.33 no.3
    • /
    • pp.221-229
    • /
    • 2000
  • Background: Thromboxane A2 and endothelin-1 are the potent vasoconstrictors affecting pulmonary pathophysiology in response to whole body inflammatin following CPB. Aprotinin, as an antiiflammatory agent, may decrease the release of such vasoactive substance from pulmonary tissues, preventing pulmonary hypertension after cardiopulmonary bypass. Material and Method: Ten mongrel dogs(Bwt. ac. 20kg) were subjected to cardioupulmonary bypass for 2 hours and postbypass pulmonary vascular resistance(0, 1, 2, 3 hours) were compared with prebypass level. The dogs were divided into 2 groups; control group(n-5) and aprotinin group(n=5). In the aprotinin group, aprotinin was administered as follows; 50,000 KIU/kg mixed in pump priming solution, 50,000 KIU/kg prebypass intravenous infusion over 30 minutes, 10,000 KIU/kg/hour postbypass continuous infusion. Prebypass and postbypass 0, 1, 2, 3 hour pulmonary vascular resistance were measured. At prebypass and postbypass 0, 90, 180 minutes, blood samples were obtained from pulmonary arterial and left atrial catherers for the assay of plasma thromboxane B2 a stable metabolite of thromboxane A2, and endothelin-1 concentrations. Result: The ratios of pustbypass over prebypass pulmonary vascular at postbypass 0, 1, 2, 3 hours were 1.28$\pm$0.20, 1.82$\pm$0.23, 1.90$\pm$0.19, 2.14$\pm$0.18 in control group, 1.58$\pm$0.18, 1.73$\pm$0.01, 1.66$\pm$0.10, 1.50$\pm$0.08 in aprotinin group ; the ratios gradually increased in control group while decreased or fluctuated after postbypass 1 hour in aprotinin group. There was statistically significant difference between control group and aprotinin group at postbypass 3 hours(P=0.014). Pulmonary arterial plasma concentration of thromboxane B2(pg/ml) at prebypass, postbypass 0, 90, 180 minutes were 346.4$\pm$61.9, 529.3$\pm$197.6, 578.3$\pm$255.8, 493.3$\pm$171.3 in control group, 323.8$\pm$118.0, 422.6$\pm$75.6, 412.3$\pm$59.9, 394.5$\pm$154.0 in aprotinin group. Left atrial concentrations were 339.3$\pm$89.2, 667.0$\pm$65.7, 731.2$\pm$192.7, 607.5$\pm$165.9 in control group, 330.0$\pm$111.2, 468.4$\pm$190.3, 425.4$\pm$193.6, 4.7.3$\pm$142.8 in aprotinin group. These results showed decrement of pulmonary thromboxane A2 generation in aprotinin group. Pulmonary arterial concentrations of endothelin-1(fmol/ml) at the same time sequence were 7.84$\pm$0.31, 13.2$\pm$0.51, 15.0$\pm$1.22, 16.3$\pm$1.73 in control group, 7.76$\pm$0.12, 15.3$\pm$0.71, 22.6$\pm$6.62, 14.9$\pm$1.11 in aprotinin group. Left atrial concentrations were 7.61$\pm$17.2, 57.1$\pm$28.4, 18.9$\pm$18.2, 31.5$\pm$20.5 in control group, 5.61$\pm$7.61, 37.0$\pm$26.2, 28.6$\pm$21.7, 37.8$\pm$30.6 in aprotinin group. These results showed that aprotinin had no effect on plasma endothelin-1 concentration after cardiopulmonary bypass. Conclusion: Administration of aprotinin during cardiopulmonary bypass could attenuate the increase in pulmonary vascular resistance after bypass. Inhibition of pulmonary thromboxane A2 generation was thought to be one of the mechanism of this effect. Aprotinin had no effect on postbypass endothelin-1 concentration.

  • PDF