• Title/Summary/Keyword: AC servo

Search Result 219, Processing Time 0.026 seconds

A speed predictive control of the AC servo motor using DSP processor (DSP를 사용한 AC 서보 모터의 속도 예측 제어)

  • 김진환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.22-28
    • /
    • 1998
  • This paper includes AC servo motor speed control usig the predictive control strategy. Generally, AC servo motor control should have the fast response characteristics. For the issue, sliding mode control and PID control have been applied. However, the former has the speed ripple response due to the chattering and the latter requires the many trial efforts. Originally, the predictive control which has been used in process control area does not need the priori knowledge for the application system and it is easy to compute the optimal gain with the prediction. In this paper, the TMS320C31 DSP pocessor is used for AC motor control with fst dynamics and the tuning guid-line for the parameters of the predictive control algorithm is given in order to reduce the computation load. Also, the actuator saturationis implemented uisngthe QP(Quadratic Programming) method and the transient response is improved by the identified intertia coefficient when AC motor is drived at forward/reverse rotation.

  • PDF

A Study on Vector Control of Permanent Magnet Synchronous Motor Using TMX320F2812 (TMX320F2812를 이용한 영구자석형 동기 전동기의 벡터 제어에 관한 연구)

  • 홍선기
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.123-128
    • /
    • 2004
  • Recently with the development of power switching device and DSP which has perip -heral devices to control AC servo system, the servo technology has met a new development opportunity. In this study, a DSP based AC servo system with a 3-phase PMSM is proposed. The newly produced DSP TMX320F2812 version C which has the performance of fast speed, 150MIPS, and rich peripheral interface is used. Also space vector pulse width modulation (SVPWM) and the digital PI control are implemented to the servo control system.

Position Control of AC Servo Motor Using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 AC 서보 모터의 위치제어)

  • 천정우;송현정;함준호;최승복
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.44-50
    • /
    • 2004
  • The conventional sliding mode control(SMC) technique requires a prior knowledge of the upperbounds of external disturbance to guarantee a robust control performance. This, however, may not be easy to identity in practice. This paper presents a new methodology, sliding mode control with disturbance estimator(SMCDE), which offers a robust control performance without a prior knowledge of the upperbounds. The proposed technique is featured by an integrated average value of the imposed disturbance over a certain period. The proposed technique is applied to the position control of AC servo motor, and experimental results are compared between the conventional and proposed schemes.

A Study on the Control of AC Servo Motor for Machine Tools Cartesian Coordinate Type Using Neural Network (신경회로망을 이용한 평면좌표형 공작기계 교류서보전동기의 제어에 관한 연구)

  • 김평호;백형래;정수복
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.49-56
    • /
    • 2001
  • This paper presents a new approach to the problem based on neural network methods. Instead of using general controllers, neural networks PID control are used to control AC servo motor. The most popular and widely used control method in servo system control loops is PID type. PID controller has the features of simple structure, stability and reliability. But it has limitations in complex system control and can not remain above virtues under the conditions of parameters uncertain and environment uncertainties. AC servo motor controller is designed for drive of the cartesian coordinate type for machine tools.

  • PDF

Speed Control of AC Servo Motor Using Adaptive Fuzzy-Sliding Observer (적응 퍼지-슬라이딩 관측기를 이용한 교류 서보 전동기 속도제어)

  • Kim, Sang-Hoon;Yoon, Kwang-Ho;Ko, Bong-Woon;Kim, Won-Tae;Kim, Gi-Nam;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.726-728
    • /
    • 2004
  • In this paper, the gain of the observer is properly set up using the fuzzy control and Fuzzy-Sliding observer(FSQ) that have a superior transient characteristic and is easy to implement compared to the existing method is designed. It estimate the differentiation of the armature current directly using the armature current measured in the AC motor. It estimate the speed of the rotor using the differentiation. It is proposed speed sensorless control method using the estimated speed. Optimal gain of speed observer(Luenberger observer) was set up using the fuzzy control and adapted speed control of AC servo motor. To verify the performance of designed Fuzzy-Sliding observer, simulation compared with fixed speed observer gain of G.B Wang and S.S Peng's sliding observer is performed. Also, it was proved the excellence and feasibility of the proposed observer from the comparison test with a speed sensor and without a speed sensor which used a highly efficient drive and 400W AC servo motor starting system.

  • PDF

An Implementation of Vector Control of AC Servo Motor based on Optical-EtherCAT Network (광-ETherCAT 네트워크 기반 PMSM의 벡터제어 구현)

  • Kim, Yong-Jin;Kim, Kwang-Heon;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.583-588
    • /
    • 2013
  • In this paper we propose implement technique of vector current control in order to verify performance of an AC servo driver that is able to easy control of motion with multi-axis in the robot. In doing do, we have developed the AC servo driver to driving PMSM, and then we confirm that this driver whether operating or not normally by controlling of vector current. The vector current control was performed at the no load condition in PMSM. Then we compare command control and tracking control. As a result of verification, we recognize we get a satisfactory result.

AC Servo Motor Controller for Driving Cartesian Coordinate Type Robot Using Neural Networks (신경회로망을 이용한 평면 좌표계형 로봇구동용 교류서보전동기 제어기)

  • 김평호;서진연;김대곤;이강연;백형래
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.14-17
    • /
    • 1999
  • This paper describes the controller for the improving speed control the AC servo motor. The microprocessor provides an output to the difference in command. The servo system improves the characteristics of speed control. When the motor is running at the same speed as set by the reference signal, the speed encoder also provides a signal the same frequency. Thus, the microprocessor controlled digital techniques enable to realize the flexible performance and control which was possible with time constant. We can know that PI control using neural networks by 80196 can control efficiently speed of AC Servo motor. Finally experimental results prove excellent performance of this control system. The system can be adaptable to CNC machine.

  • PDF

Fuzzy sliding mode controllers for high performance control of AC servo motors (AC 서보 모터의 고성능 제어를 위한 퍼지 슬라이딩 모드 제어기)

  • 김광수;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.732-735
    • /
    • 1997
  • Variable Structure Controller(VSC) is usually known to have robustness to bounded exogenous disturbances. The robustness is attributed to the discontinuous term in the control input. However, this discontinuous term also causes an undesirable effect called chattering. To alleviate chattering, a hybrid controller consisting of VSC and Fuzzy Logic Controller(FLC) is proposed, which belongs to the category of Fuzzy Sliding Mode Controller(FSMC). The role of FLC in FSMC is to replace a fixed gain of a discontinuous term with a time-varying one based on a specified rule base. The characteristics of proposed controller are shown to be similar to those of VSC with a saturation function instead of sign function. The only remarkable difference is the nonlinearity whose form can be adjusted by free parameters, normalize gain, denormalize gain, and membership functions. Applied to AC servo motor, the proposed controller is compared with VSC in a regulation problem as well as a speed tracking problem. The simulation results show a substantial chatter reduction.

  • PDF

Variable structure control of AC servo motors for high performance (가변 구조 제어를 이용한 AC 서보 모터의 고성능 제어)

  • Kim, Jung-Ho;Eun, Yong-Soon;Cho, Dong-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.351-361
    • /
    • 1996
  • A variable structure controller is developed for an AC servo motor used in CNC milling machines. The designed controller is implemented as an outer loop controller to a factory designed motor-servopack system. The robustness parameter is tuned for a fast response when the speed tracking error is large, while it is tuned for small oscillations when the speed tracking error is small. The designed controller is installed on a CNC machine using a PC. Cutting experiments show improved performance over the factory-designed controller.

  • PDF

Neuro-Fuzzy Observer Design for Speed control of AC Servo Motor (교류 서보 전동기의 속도제어를 위한 뉴로-퍼지 관측기설계)

  • Ban, Gi-Jong;Choi, Sung-Dai;Yoon, Kwang-Ho;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.170-173
    • /
    • 2005
  • This paper presents an Fuzzy-Neuro Observer system for an ac servo motor dirve to track periodic commands using a neuro-fuzzy observer. AC servo motor drive system is rather similar to a linear system. However, the uncertainties, such as machanical parametric variation, external disturbance, uncertainty due to nonideal in transient state. therefore an intelligent control system that isan on-line trained neural network controller with adaptive learning rates.

  • PDF