• Title/Summary/Keyword: AC regeneration system

Search Result 26, Processing Time 0.026 seconds

A study of regenerative inverter system with capability of harmonic reduction (고조파 저감 능력을 가진 회생용 인버터 시스템 연구)

  • Choi, Chang-Youl;Bae, Chang-Hwan;Jang, Su-Jin;Song, Sang-Hun;Won, Cung-Yeun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.443-448
    • /
    • 2005
  • This paper proposed a regeneration inverter system, which can regenerate the excessive power form dc bus line to ac source for traction system. The proposed regeneration inverter system for dc traction can reduce harmonics which are include to ac current source. The regenerative inverter is operated as two modes. As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. In the paper, a regeneration inverter used PWM DC/AC converter algorithm. And an active power filter used p-q theory. The simulation was composed as a prototype model[3kW]. Simulation results show that two algorithm can be used to real model[100kW]. Finally, the inverter was successfully operated as regeneration mode.

  • PDF

A Regeneration Inverter for Traction Applications with a Active Power Filter (능동전력필터를 가진 지하철 회생인버터 시스템)

  • Won, Chung-Yuen;Jang, Su-Jin;Kim, Yuen-Chung;Lee, Byoung-Kuk;Bae, Chang-Hwan;Kim, Yong-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.25-32
    • /
    • 2006
  • This paper proposes a regeneration inverter system, which can regenerate the excessive power form do bus line to ac source for traction system. The proposed regeneration inverter system for dc traction can reduce harmonics which are included to ac current source. The regeneration inverter is operated as two modes. In the regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and in the active power filter mode, it can compensate harmonic distortion produced by the rectifier substation. In this paper, the regeneration inverter uses PWM DC/AC inverter algorithm and the active power filter uses p-q theory. From the informative simulation and experimental results, which are performed wiith a prototype rated 3.7[kw], it can expected that the proposed system can be effectively applied in the real traction system rated 100[kw].

A 15kW Grid-Connected Battery Charging and Discharging System with AC Regeneration Function

  • Youn, Sun-Jae;Kim, Jun-Gu;Kim, Jae-Hyung;Won, Chung-Yuen;Na, Jong-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.491-493
    • /
    • 2011
  • In this paper, a 15kW grid-connected battery charging and discharging system was proposed. AC regenerative device which consisted of an inverter using IGBTs and LCL filter transferred surplus power to grid. Phase locked loop(PLL) was used to resolve three-phase unbalance. AC regeneration function is able to improve the rate of energy use and the cost savings of energy is expected.

  • PDF

Regeneration inverter system for DC traction system (직류 지하철 급전시스템용 회생인버터 시스템)

  • Cho, Kee-Hyun;Jang, Su-Jin;Kim, Jong-Yoon;Won, Chung-Yuen;Kim, Yong-Ki
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.28-32
    • /
    • 2007
  • In this paper, a unified regenerative inverter and control algorithm are proposed in order to perform regenerative action and active power filter action. While the regenerative mode of traction, it works as regenerative inverter to reduce a excessive power of DC bus line and the powering mode of the traction, it works as active power filter to compensate ac current distortion, power factor, and voltage unbalance. In the paper, a regeneration inverter used PWM DC/AC inverter algorithm. And an active power filter used p-q theory. We are carrying out a mode analysis of DC traction system similar to actual system with MG-set and experimenting with prototype model. Through the simulation and experiment, we were proving the regeneration inverter operation which suggested in this paper.

  • PDF

Modeling and Analysis of Three Phase PWM Converter (3상 PWM 컨버터의 모델링 및 해석)

  • 조국춘;박채운;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.328-335
    • /
    • 1999
  • Three phase full bridge rectifier has been used to obtain dc voltage from three phase ac voltage source. The rectifier system has drawbacks that power factor is low and power flow is unidirectional. Therefore, when dc voltage increases due to regeneration of power the dynamic resister for dissipation of regeneration power must be installed. But three phase PWM converter can be controlled to operate with unity power factor and bidirectional power flow. Therefore when the PWM converter is used as do supply system, the dissipating resistor is not necessary. On this thesis, in order to design a controller having good performance, the hee phase PWM converter is completely modeled by using circuit DQ-transformation and thus a general and simple instructive equivalent circuit is obtained; the inductor set becomes a second order gyrator-coupled system and three phase inverter becomes a transformer as well. Under given phase angle(${\alpha}$) and modulation index(MI) of the three phase inverter, the dc and ac characteristics are obtained by analysis of the transformed equivalent circuit The validity of the equivalent circuit is confirmed through PSPICE simulation. And based on the dc and ac characteristics a controller with unity power factor is proposed.

  • PDF

A Study on Inverter for DC Traction Regenerative Power Control with Active Power Filter Ability (능동전력필터 기능이 추가된 지하철 회생 전력 제어용 인버터에 관한 연구)

  • Choi, Chang-Youl;Bae, Chang-Hwan;Jang, Su-Jin;Song, Sang-Hun;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.463-465
    • /
    • 2005
  • This paper proposes a regeneration inverter system, which can regenerate the excessive power form the DC bus line to the AC source for traction systems. The proposed regeneration inverter system for DC traction can reduce harmonics which is a characteristic of the AC current source. The simulation was composed as a prototype model[3.7kW]. Finally, it is shown that the inverter can successfully operate in regeneration mode.

  • PDF

Regeneration of Tobacco Tissue Introduced with the Maize Transposable Element Activator (옥수수 전이인자 Ac가 도입된 연초조직의 재분화)

  • 박성원;최광태;박지창;김영진
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.13 no.2
    • /
    • pp.34-41
    • /
    • 1991
  • To explore the possibility of introducing Zea mays transposable element Ac(activator) which can be used as a mutagen and gene tag in tobacco plants other than maitre, we tried to introduce a cloned Ac element into tobacco cells by an Agrobacterium tumefaciens binary vector system. Transformation of N. babacum cv. Burley 21 tissues and regeneration to whole plant were carried out. The frequency of the transformed callus induced in shoot induction media was higher than that of transformed callus induced in callus induction media. However, the calli were not grown in the second selection media, and became yellow senescent calli. Regenerated tobacco plantlets with foreign gene were also obtained in shoot induction media containing 100 $\mu\textrm{g}$/ml kanamycin and 100$\mu\textrm{g}$/ml carbenicillin. The leaf tissues of transformant was also resistant to 1000 $\mu\textrm{g}$/ml kanamycin. The chromosomal DNAs of transformant and normal plant of N. tabacum were digested by EcoR I and Hind III but not by Pst I.

  • PDF

Ac/Ds-mediated gene tagging system in rice

  • Eun, Moo-Young;Yun, Doh-Won;Nam, Min-Hee;Yi, Gi-Hwan;Han, Chang-Deok;Kim, Doh-Hoon;Park, Woong-June;Kim, Cheol-Soo;Park, Soon-Ki
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.95-105
    • /
    • 2005
  • Transposon-mediated insertional mutagenesis provides one of the most powerful tools for functional studies of genes in higher plants. This project has been performed to develop a large population of insertional mutations, and to construct databases of molecular information on Ds insertion sites in rice. Ultimate goals are to supply genetic materials and information to analyze gene function and to identify and utilize agronomically important genes for breeding purpose. Two strategies have been employed to generate the large scale of transposon population in a Japonica type rice, Dongjin Byeo; 1) genetic crosses between Ac and Ds lines and 2) plant regeneration from seeds carrying Ac and Ds. Our study showed that over 70% of regenerated plants generally carried independent Ds elements and high activity of transposition was detected only during regeneration period. Ds-flanking DNA amplified from leaf tissues of F2 and T1 (or T2) plants have been amplified via TAIL-PCR and directly sequenced. So far, over 65,000 Ds lines have been generated and over 9,500 Ds loci have been mapped on chromosomes by sequence analysis. Database of molecular information on Ds insertion sites has been constructed, and has been opened to the public and will be updated soon at http://www.niab.go.kr. Detailed functional analysis of more than 30 rice mutants has been performed. Several Ds-tagged rice genes that have been selected for functional analysis will be briefly introduced. We expect that a great deal of information and genetic resources of Ds lines would be obtained during the course of this project, which will be shared with domestic and international rice researchers. In addition to the Japonica rice, we have established the tagging system in an rice line of indica genetic background, MGRI079. MGRI079 (Indica/Japonica) was transformed with Agrobacteria carrying Ac and Ds T-DNA vectors. Among transgenic lines, we successfully identified single-copy Ds and Ac lines in MGR1079. These lines were served as ‘starter lines’ to mutagenize Indica genetic background. To achieve rapid, large scale generation of Ds transposant lines, MGR1079 transformants carrying homozygous Ac were crossed with ones with homozygous Ds, and $F_2$seeds were used for plant regeneration. In this year, over 2,000 regeneration plants were grown in the field. We are able to evaluate the tagging efficiency in the Indica genetic background in the fall.

  • PDF

AC Regeneratable Battery Charging and Discharging Test System (AC 회생이 가능한 배터리 충·방전 테스트 시스템)

  • Kim, Jun-Gu;Youn, Sun-Jae;Kim, Jae-Hyung;Won, Chung-Yuen;Na, Jong-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.99-106
    • /
    • 2012
  • In this paper, 15[kW] AC regenerative system for battery charging and discharging test is proposed. The regenerative system is able to regenerate surplus energy to the grid in discharging mode, and the inverter of the system can be operated as a converter to compensate scarce energy in charging mode. In case of the conventional DC charging and discharging system, the regenerative energy is consumed by a resistor. However, as the proposed system regenerates the surplus energy to the grid through using DC-AC inverter, the energy saving effect can be achieved. In this paper, 15[kW] battery charging and discharging system is developed, and the validity of the system is verified through simulation and experimental results.

A study on energy regeneration of power supply for DC electric traction system (직류전철용 전력공급 장치의 에너지희생에 관한 연구)

  • Bang Hyo-Jin;Jang Su-jin;Song Sang-Hun;Won Chung-Yuen;Kim Yong-Ki;Ahn yu-Bok
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.439-442
    • /
    • 2004
  • This paper described a dc power system, which can generate the excessive do power form do bus line to ac source in substation for traction system. The proposed regeneration inverter system for dc traction can be used as both an inverter and an active power filter(APF). As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation.

  • PDF