• Title/Summary/Keyword: AC power controller

Search Result 385, Processing Time 0.024 seconds

The Feed-forward Controller and Notch Filter Design of Single-Phase Photovoltaic Power Conditioning System for Current Ripple Mitigation (단상 PVPCS 출력 전류의 리플 개선을 위한 노치 필터 및 피드 포워드 제어기 설계)

  • Kim, Seung-Min;Yang, Seung-Dae;Choi, Ju-Yeop;Choy, Ick;Lee, Young-Gwon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.325-330
    • /
    • 2012
  • A single-phase PVPCS(photovoltaic power conditioning system) that contains a single phase dc-ac inverter tends to draw an ac ripple current at twice the out frequency. Such a ripple current may shorten passive elements life span and worsen output current THD. As a result, it may reduce the efficiency of the whole PVPCS system. In this paper, the ripple current propagation is analyzed, and two methods to reduce the ripple current are proposed. Firslyt, this paper presents notch filter with IP voltage controller to reject specific current ripple in single-phase PVPCS. The notch filter can be designed that suppress just only specific frequency component and no phase delay. The proposed notch filter can suppress output command signal in the ripple bandwidth for reducing output current THD. Secondly, for reducing specific current ripple, the other method is feed-forward compensation to incorporate a current control loop in the dc-dc converter. The proposed notch filter and feed-forward compensation method have been verified with computer simulation and simulation results obtained demonstrate the validity of the proposed control scheme.

  • PDF

Soft Start Method of V2G System using Sliding Mode Controller (슬라이딩모드 제어를 이용한 Vehicle to Grid 시스템의 초기구동)

  • Kim, Heon-Hee;Lee, Hee-Jun;Jung, Chul-Ho;Kim, Jin-Hong;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.165-166
    • /
    • 2011
  • 양방향 AC/DC 컨버터를 이용하여 EV배터리를 충전하거나 계통으로 전력을 보낼 때 PI제어기를 사용하면 임피던스를 예측할 수 없으므로 초기 구동시 오버슈트가 발생하여 회로에 스트레스가 발생한다. 본 논문에서는 Sliding Mode Controller (SMC)를 이용하여 계통으로 전력을 전달하는 알고리즘으로 소프트 스타트를 하는 알고리즘을 제안하였다. 시뮬레이션을 통하여 회로를 구성하고 제안한 제어 방법의 성능을 확인하였다.

  • PDF

Development of an Educational System and Real Time Nonlinear Control (II) (교육용 시스템 개발과 실시간 비선형 제어(II))

  • 박성욱
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.12
    • /
    • pp.571-576
    • /
    • 2002
  • This paper is to develop jumping ring system with three sensor arrays and to control levitated ring using dynamic neural mode. Placing an aluminum ring on the core and switching on an AC source causes the ring to jump in the air due to induced currents. The educational system is composed of 40th optical sensor array, encode circuit, 89C51 microprocessor and control board. The control board consists of power IC, and phase controller. Real time process is present to obtain a height of levitated ring for three different sensor arrays. Based on the educational system and the proposed dynamic neural mode, the height of levitation of the ring is controlled by reference signals. This paper focuses on real system controls using the dynamic neural mode with on line learning algorithm.

Speed Control of Induction Motor Drive for FCU Using TMS320LF2406 DSP controller (TMS320LF2406 DSP를 이용한 FCU용 유도 전동기 속도제어)

  • Choi Woo-Suk;Kim Lee-Hun;Park Kyu-Hyun;Won Chung-Yuen;Lee Sang-Suk;Choi Chang-Young
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.3-6
    • /
    • 2001
  • This paper designs a drive for high efficiency of the 3-phase IM (induction motor) for FCU(Fan Coil Unit). The speed control system of 3-phase IM for FCU has been implemented by a TMS320LF2406 DSP chip. The DSP TMS320LF2406, which include the most peripheral circuit for control of the Industrial motor suitable for AC motor drive. This type of the controller can be obtained low cost and high reliance. The proposed drive system of the 3-phase IM for the FCU is verified by simulation. The results show the speed control characteristics of the control strategy Proposed for 3-Phase IM drive.

  • PDF

A Study on Vector control of AC motor using Low-Voltage DSP for semiconductor transportation equipments (반도체 제조 장비용 저 전압 DSP칩을 이용한 서보 모터의 벡터제어에 관한 연구)

  • 홍선기;방승현;최치영
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.3
    • /
    • pp.25-30
    • /
    • 2003
  • In this study, the controller using TMS320LF2407 low voltage DSP for motor control is designed and realized. It has 40 MIPS calculating ability and its driving voltage is 3.3 V for low power. The peripheral elements, however usually use 5 V and they need voltage transfer interface. In this study, voltage transformation and reducing noise are studied and space vector PWM is adopted as a motor control scheme. According to these methods, the efforts for software programming and calculation processes are reduced. In addition, the hardware is also simplified by substituting the current control part with software programming. Through this study, the DSP based servo controller increases its ability for high performance multi-function on semiconductor transportation equipments..

  • PDF

Enhanced Phase Angle Detect Method Using High-pass Filter (고주파 필터를 이용한 개선된 위상각 검출 방법)

  • Heo, Min-Ho;Song, Sung-Gun;Kim, Gwang-Heon;Nam, Hae-Gon;Park, Sung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2370-2378
    • /
    • 2009
  • The enhanced phase angle estimation algorithm is essential to supply the power stably under synchronizing with grid source. In this paper, we are proposed the novel phase angle estimation algorithm and verified the validity of proposed method as simulation with PSIM and experiments. We sort the harmonics element using high-pass filter(HPF) that have the cut-off frequency below basic element and make reverse d-q transformation. So, it can be restored the harmonics element at stationary axis, and we can get the fundamental voltage element of AC grid. Proposed PLL method have a rapid responsibility and a large margin at controller design than conventional method because it have a small phase delay and a sufficient controller gain margin. And, it can reduce the error of voltage rms value and axis transformation according to robust PLL algorithm against the harmonic and phase unbalance.

Study on T-Type Multi Level Inverter for UIPV System (계통연계형 태양광발전 시스템을 위한 T-타입 타상 인버터에 관한 연구)

  • Bayasgalan, Bayasgalan;Ryu, Ji-Su;Lee, Sang-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.313-314
    • /
    • 2012
  • In this paper presents study of T-Type multi level inverter for utility interactive photo voltaic inverter. In order to increase efficiency and performance of utility interactive photo voltaic (UIPV) system, we propose multi level PCS topology, such as T-type inverter. The control algorithm for utility interactive inverter is implemented by simulation and experimentation, which includes dc-bus and midpoint voltage controller, ac-grid current controller and PLL algorithm.

  • PDF

Development of the High Input Voltage Self-Power for LVDC

  • Kim, Kuk-Hyeon;Kim, Soo-Yeon;Choi, Eun-Kyung;HwangBo, Chan;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.387-395
    • /
    • 2021
  • Distributed resources such as renewable energy sources and ESS are connected to the low voltage direct current(LVDC) distribution network through the power conversion system(PCS). Control power is required for the operation of the PCS. In general, controller power is supplied from AC power or DC power through switch mode power supply(SMPS). However, the conventional SMPS has a low input voltage, so development and research on high input voltage self-power suitable for LVDC is insufficient. In this paper, to develop Self-Power that can be used for LVDC, the characteristics of the conventional topology are analyzed, and a series-input single-output flyback converter using a flux-sharing transformer for high voltage is designed. The high input voltage Self-Power was designed in the DCM(discontinuous current mode) to reduce the switching loss and solve the problem of current dissipation. In addition, since it operates even at low input voltage, it can be applied to many applications as well as LVDC. The validity of the proposed high input voltage self-power is verified through experiments.

Imposed Weighting Factor Optimization Method for Torque Ripple Reduction of IM Fed by Indirect Matrix Converter with Predictive Control Algorithm

  • Uddin, Muslem;Mekhilef, Saad;Rivera, Marco;Rodriguez, Jose
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.227-242
    • /
    • 2015
  • This paper proposes a weighting factor optimization method in predictive control algorithm for torque ripple reduction in an induction motor fed by an indirect matrix converter (IMC). In this paper, the torque ripple behavior is analyzed to validate the proposed weighting factor optimization method in the predictive control platform and shows the effectiveness of the system. Therefore, an optimization method is adopted here to calculate the optimum weighting factor corresponds to minimum torque ripple and is compared with the results of conventional weighting factor based predictive control algorithm. The predictive control algorithm selects the optimum switching state that minimizes a cost function based on optimized weighting factor to actuate the indirect matrix converter. The conventional and introduced weighting factor optimization method in predictive control algorithm are validated through simulations and experimental validation in DS1104 R&D controller platform and show the potential control, tracking of variables with their respective references and consequently reduces the torque ripple.

Fundamental Output Voltage Enhancement of Half-Bridge Voltage Source Inverter with Low DC-link Capacitance

  • Elserougi, Ahmed;Massoud, Ahmed;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.116-128
    • /
    • 2018
  • Conventionally, in order to reduce the ac components of the dc-link capacitors of the two-level Half-Bridge Voltage Source Inverter (HB-VSI), high dc-link capacitances are required. This necessitates the employment of short-lifetime and bulky electrolytic capacitors. In this paper, an analysis for the performance of low dc-link capacitances-based HB-VSI is presented to elucidate its ability to generate an enhanced fundamental output voltage magnitude without increasing the voltage rating of the involved switches. This feature is constrained by the load displacement factor. The introduced enhancement is due to the ac components of the capacitors' voltages. The presented approach can be employed for multi-phase systems through using multi single-phase HB-VSI(s). Mathematical analysis of the proposed approach is presented in this paper. To ensure a successful operation of the proposed approach, a closed loop current controller is examined. An expression for the critical dc-link capacitance, which is the lowest dc-link capacitance that can be employed for unipolar capacitors' voltages, is derived. Finally, simulation and experimental results are presented to validate the proposed claims.