• Title/Summary/Keyword: AC Loss

Search Result 625, Processing Time 0.025 seconds

A Study on Optimal Power Flow Method for Inctergrated AC/DC Systems (DC 링크를 포함한 전력계통의 최적조류계산)

  • An, B.C.;Wang, Y.P.;Hur, D.Y.;Chong, H.H.;Joo, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1133-1136
    • /
    • 1997
  • This study established AC-DC system model including DC Link, and then BC Link equation was derived from the model. The equation was included into the calculational algorithm of AC system and solved using fast decoupled method. To minimize the line loss of AC-DC system, optimum theory was applied to the equations.

  • PDF

Loss Analysis according to Configuration Method of AC Module Integrated Converter for Photovoltaic System (태양광 발전 시스템용 AC 모듈 집적형 전력변환기의 구성 방식에 따른 손실 분석)

  • Kang, Sunghyun;Son, Won-Jin;Ann, Sangjoon;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.172-173
    • /
    • 2019
  • 본 논문은 태양광(photovoltaic, PV) 발전 시스템용 AC 모듈형 집적형 전력변환기(module Integrated converter, MIC)의 구성 방식에 따른 전력 손실을 비교·분석한다. 대표적으로 사용되는 플라이백 컨버터를 기반으로 하는 1-stage와 2-stage 구조의 AC 모듈형 PV-MIC를 비교하고, PSIM 시뮬레이션과 수식을 이용하여 전력 손실을 계산한다.

  • PDF

Improved ZVT AC/DC PFC Boost Converter (개선된 ZVT AC/DC PFC Boost 컨버터)

  • Ryu, Jong-Gyu;Kim, Yong;Bae, Jin-Yong;Gye, Sang-Bum;Kwon, Soon-Do
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.172-175
    • /
    • 2005
  • Recently international regulations governing the amount of harmonic currents(e.g IEC 61000-3-2) became mandatory and active Power factor correction (PFC) pre-regulator circuit became inevitable for the AC/DC converters. Among these topologies, the boost topology represents an optimum solution for a PFC pre-regulation in a high power application. This paper propose improved ZVT(Zero Voltage Transition) AC/DC PFC Boost using the average current control employing a soft-switching technique of the auxiliary switch with a minimum number of components. The conventional ZVT PFC Boost Converter has a disadvantage that the auxiliary switch turns off hard, which influences the overall efficiency and the EMI problem. In this paper, an improved ZVT PFC Boost converter using active snubber is proposed to minimize the switching loss of the auxiliary. The prototype of 100kHz, 640W system was implemented to show the improved performance.

  • PDF

An Energy Recovery Circuit for AC Plasma Display Panel with Serially Coupled Load Capacitance-SER1

  • Yang, Jin-Ho;Whang, Ki-Woong;Kang, Kyoung-Ho;Kim, Young-Sang;Kim, Hee-Hwan;Park, Chang-Bae
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.63-67
    • /
    • 2001
  • The switching power loss due to the panel capacitance during sustain period in AC PDP driving system can be minimized by using the energy recovery circuits. We proposed a new energy recovery circuit, SER1 (Seoul national univ. Energy Recovery circuit 1st). The experimental results of its application to a 42-inch surface discharge type AC PDP showed superior performance of SER1 in energy recovery efficiency and low distortion voltage waveform. Energy recovery efficiency of SER1 was measured up to 92.3 %, and the power dissipation during the sustain period was reduced by 15.2 W in 2000 pulse/frame compared with serial LC resonance energy recovery circuit.

  • PDF

Insulating Design and Test of 22.9kV Class Mini-Model Transformer Considering AC Loss (AC Loss를 고려한 22.9kV급 Mini-Model 변압기의 절연 설계 및 시험)

  • 백승명;정종만;곽동순;김해종;석복렬;김상현
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.420-424
    • /
    • 2004
  • This paper presents experimental data from model windings with different arrangement of coil in order to provide information to design a 22.9kV class HTS transformer. Before experiment, the composite insulation of two different type of HTS transformers are investigated. The first basic of investigation is a breakdown characteristic of liquid nitrogen and flashover characteristic on the GFRP surface under ac and impulse, The second investigation is insulation design, manufacture and test of model windings. These include a AC withstand voltage test of 50 kV rms and a lighting impulse test of 150 kV at peak.

Three-Phase PWM Inverter and Rectifier with Two-Switch Auxiliary Resonant DC Link Snubber-Assisted

  • Nagai Shinichiro;Sato Shinji;Matsumoto Takayuki
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.233-239
    • /
    • 2005
  • In this paper, a new conceptual circuit configuration of a 3-phase voltage source, soft switching AC-DC-AC converter using an IGBT module, which has one ARCPL circuit and one ARDCL circuit, is presented. In actuality, the ARCPL circuit is applied in the 3-phase voltage source rectifier side, and the ARDCL circuit is in the inverter side. And more, each power semiconductor device has a novel clamp snubber circuit, which can save the power semiconductor device from voltage and current across each power device. The proposed soft switching circuits have only two active power semiconductor devices. These ARCPL and ARDCL circuits consist of fewer parts than the conventional soft switching circuit. Furthermore, the proposed 3-phase voltage source soft switching AC-DC-AC power conversion system needs no additional sensor for complete soft switching as compared with the conventional 3-phase voltage source AC-DC-AC power conversion system. In addition to this, these soft switching circuits operate only once in one sampling term. Therefore, the power conversion efficiency of the proposed AC-DC-AC converter system will get higher than a conventional soft switching converter system because of the reduced ARCPL and ARDCL circuit losses. The operation timing and terms for ARDCL and ARCPL circuits are calculated and controlled by the smoothing DC capacitor voltage and the output AC current. Using this control, the loss of the soft switching circuits are reduced owing to reduced resonant inductor current in ARCPL and ARDCL circuits as compared with the conventional controlled soft switching power conversion system. The operating performances of proposed soft switching AC-DC-AC converter treated here are evaluated on the basis of experimental results in a 50kVA setup in this paper. As a result of experiment on the 50kVA system, it was confirmed that the proposed circuit could reduce conduction noise below 10 MHz and improve the conversion efficiency from 88. 5% to 90.5%, when compared with the hard switching circuit.

Path-dependency of Transmission Loss Allocation using Transaction Strategy (거래전략에 따른 송전손실배분의 경로의존성에 관한 연구)

  • Min, Kyung-Il;Ha, Sang-Hyeon;Lee, Su-Won;Moon, Young-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.924-931
    • /
    • 2008
  • This paper presents a buswise transmission loss allocation algorithm utilizing the transaction strategy. We prove that whatever calculated by any transaction strategy, the total of the allocated transmission losses of each bus, including no-load loss allocation, almost equals the total loss of AC power flow algorithm and the loss is perfectly slackbus-independent. In this paper, the allocated transmission losses of each bus is calculated by the method of integrating loss sensitivities using by the load level parameter ${\lambda}$. The performance of the proposed algorithm is evaluated by the case studies carried out on the WSCC 9-bus and IEEE 14-bus systems.

Iron Loss Analysis Considering Excitation Conditions Under Alternating Magnetic Fields

  • Hong, Sun-Ki;Koh, Chang-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.33-38
    • /
    • 2010
  • In this paper, the nature of iron loss in electrical steel during alternating field excitation is investigated more precisely. The exact definition of AC iron loss is cleared by accurately measuring the iron loss for conditions of both the sinusoidal magnetic field and sinusoidal magnetic flux density. The results of this approach to iron loss calculations in electrical steel are compared to experimentally-measured losses. In addition, an inverse hysteresis model considering eddy current loss was developed to analyze the iron loss when the input is the voltage source. With this model, the inrush current in the inductor or transformer as well as the iron loss can be calculated.

Power Loss Analysis according to Winding Array Method of High Frequency Transformer (고주파 트랜스포머의 권선배열에 기법 따른 손실해석)

  • Yoon, Shin-Yong;Kim, IL-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.15-19
    • /
    • 2005
  • This paper analyzed the power loss characteristics according to winding thickness and winding method of high frequency transformer. Power loss was analyzed by PExprt using FEM tool. The ferrite core model for analysis be used the EE10 type of TDK cop.. Transformer model objected flyback transformer type applied to flyback converter/inverter. Therefore, analysis results of loss were obtained from inner parameters of DC, AC resistance, leakage inductance, copper loss, core loss, and temperature etc.

Accurate Transmission Loss Allocation Algorithm Based on the Virtual Transaction Strategy: Comparison of Path-integral with Discrete Integral Methods

  • Min, Kyung-Il;Moon, Young-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.511-521
    • /
    • 2010
  • This paper presents a new algorithm to determine accurate bus-wise transmission loss allocation utilizing path-integrals dictated by the transaction strategy. For any transaction strategy, the total sum of the allocated transmission losses of all buses is equal to the actual loss given by the AC power-flow calculation considering the distributed slack. In this paper, the bus-wise allocation of the transmission loss is calculated by integrating the differential loss along a path determined by the transaction strategy. The proposed algorithm is also compared with Galiana's method, which is the well-known transmission loss allocation algorithm based on integration. The performance of the proposed algorithm is evaluated by case studies carried out on the WSCC 9-bus, IEEE 14-bus, New England 39-bus, and IEEE 118-bus systems. The simulation results show that the proposed algorithm is fast and accurate with a large step size.