• Title/Summary/Keyword: AC(Activated Carbon)

Search Result 212, Processing Time 0.026 seconds

A Study on the Formation of OH Radical by Metal-supported Catalyst in Ozone-catalytic Oxidation Process (오존촉매산화공정에서 금속 담지촉매에 의한 수산화라디칼 생성연구)

  • Lee, Sun Hee;Choi, Jae Won;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.432-439
    • /
    • 2018
  • Metal catalysts such as Fe, Co, Mn, and Pd supported on the activated carbon (AC) were prepared to improve functional groups for the chemical adsorption and catalytic ozonation. Following ascending orders of the phenol decomposition rate, dissolved ozone decomposition ratio and TOC (total organic carbon) removal from experimental results of advanced oxidation process (AOP) were observed: Fe-AC < AC < Co-AC < Mn-AC < Pd-AC. BET analysis results showed that the physical properties of the metal impregnated activated carbon had no effect on the catalytic ozonation, and the catalytic effect was dependent on the kind of impregnated metal. The ratio of the formed concentration of OH radical to that of ozone (RCT) was measured by using the decomposition outcome of p-chlorobenzoic acid, a probe compound that reacts rapidly with OH radical but slowly with ozone. The measured values of RCT were $5.48{\times}10^{-9}$ and $1.47{\times}10^{-8}$ for the ozone alone and activated carbon processes, respectively, and $2.13{\times}10^{-9}$, $1.51{\times}10^{-8}$, $4.77{\times}10^{-8}$, and $5.58{\times}10^{-8}$ for Fe-AC, Co-AC, Mn-AC, and Pd-AC processes, respectively.

Performance evaluation of TEDA impregnated activated carbon under long term operation simulated NPP operating condition

  • Lee, Hyun Chul;Lee, Doo Yong;Kim, Hak Soo;Kim, Cho Rong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2652-2659
    • /
    • 2020
  • The methyl iodide (CH3I) removal performance of tri-ethylene-di-amine impregnated activated carbon (TEDA-AC) used in the air cleaning unit of nuclear power plants (NPPs) should be maintained at least 99% between 24 month-performance test period. In order for evaluating the effectiveness of TEDA-AC on the removal performance of CH3I in nuclear power plant during the operation of NPPs, the long-term test for up to 15 months was carried out under the simulated operating conditions (e.g., 25 ℃, RH 50%, ppb level poisoning gases injection) at nuclear power plants (NPPs). The TEDA-AC samples were analyzed with the Brunauer-Emmett-Teller (BET) specific surface area and TEDA content as well as CH3I penetration test. It is clearly evident that more than 99% of CH3I removal performance of TEDA-AC was observed in the TEDA-AC samples during 15 months of long-term operation under the simulated NPP operating conditions including the ppb level of organic and oxide form of poisoning gases. BET specific surface area and TEDA content that can affect the CH3I removal performance of TEDA-AC were also maintained as those in new TEDA-AC during 15 months of long-term operation.

Separation of Freon-12 and Air Mixture by Adsorption Process (흡착공정을 이용한 프레온-12와 공기혼합가스의 분리)

  • 강석호;이태진;안희관;김윤갑
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.101-106
    • /
    • 1993
  • In order to separate the Freon-12 and air mixture$(CF_2Cl_2/Air=0.1/99.9 vol.%)$ by pressure swing adsorption (PSA), the breakthrough curve was experimentally observed in a fixed bed adsorption column. A single adsorber was packed with various adsorbents such as, the activated carbon(S-AC, W-AC) and the molecular sieve(MS-5A, MS-13X). The order of appearance of breakthrough curve is MS-5A > MS-13X > W-AC > S-AC. The activated carbon was found to be more effective adsorbent for separating Freon-12 from the mixture than the molecular sieve was. From the experimental data obtained by the separation of Freon-12 gas out of the air stream in the steady-state PSA process cycle, whose size is the same one of column used for the breakthrough curve observation, it has been confirmed that Freon-rich gas could be obtained from the purge step of PSA and Freon-free air could be obtained from the adsorption step of PSA cycle.

  • PDF

Removal of Chlorine from Aqueous Solutions by Mulberry Leaf Powder (수용액상에서 뽕잎의 염소 제거 효과)

  • 김동청;채희정;인만진
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.2
    • /
    • pp.78-82
    • /
    • 2000
  • In this study, a comparative removal of chlorine from aqueous solutions of mulberry leaf powder(MLP) and activated carbon(AC) was investigated. The chlorine removal capacities of MLP and AC were shown as a function of contact time, pH and initial chlorine concentration. Optimum contact time and removal pH value of MLP were determined as 2 hr and pH 10, respectively. Chlorine removal increased with increasing initial chlorine concentration up to 1.3g/L. Both Langmuir and Freundlich adsorption models were suitable for describing the short-term removal of chlorine by MLP and AC. According to Freundlich adsorption isotherms, the maximum removal capacity of MLP(0.264 mg Cl$_2$/mg) was nearly two times greater than that of AC(0.56 mg Cl$_2$/mg). These results suggested that MLP might potentially be used as an alternative to traditional water treatment materials for removal of residual chlorine in drinking water or process wastewater.

  • PDF

High-energy-density activated carbon electrode for organic electric-double-layer-capacitor using carbonized petroleum pitch

  • Choi, Poo Reum;Kim, Sang-Gil;Jung, Ji Chul;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.22
    • /
    • pp.70-80
    • /
    • 2017
  • Activated carbons (ACs) have been used as electrode materials of electric double-layer capacitors (EDLC) due to their high specific surface areas (SSA), stability, and ecological advantages. In order to make high-energy-density ACs for EDLC, petroleum pitch (PP) pre-carbonized at $500-1000^{\circ}C$ in $N_2$ gas for 1 h was used as the electrode material of the EDLC after KOH activation. As the pre-carbonization temperature increased, the SSA, pore volume and gravimetric capacitance tended to decrease, but the crystallinity and electrode density tended to increase, showing a maximum volumetric capacitance at a medium carbonization temperature. Therefore, it was possible to control the crystalline structure, SSA, and pore structure of AC by changing the pre-carbonization temperature. Because the electrode density increased with increasing of the pre-carbonization temperature, the highest volumetric capacitance of 28.4 F/cc was obtained from the PP pre-carbonized at $700^{\circ}C$, exhibiting a value over 150% of that of a commercial AC (MSP-20) for EDLC. Electrochemical activation was observed from the electrodes of PP as they were pre-carbonized at high temperatures above $700^{\circ}C$ and then activated by KOH. This process was found to have a significant effect on the specific capacitance and it was demonstrated that the higher charging voltage of EDLC was, the greater the electrochemical activation effect was.

Synthesis and Characterization of Calcium Derivative Combined with High-Surface-Area Activated Carbon Composites for Fine Toxic Gas Removal

  • Areerob, Yonrapach;Nguyen, Dinh Cung Tien;Dowla, Biswas Md Rokon;Kim, Hyuk;Cha, Je-Woo;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.473-479
    • /
    • 2018
  • Highly toxic gases such as hydrogen sulfide ($H_2S$), carbon dioxide ($CO_2$), and ammonia ($NH_3$) are generated by both nature and human activities and affect human health. In this research, activated carbon combined with $Ca(OH)_2$ and $CaCO_3$ (AC-CO and AC-CC, respectively) were fabricated and applied in absorbing toxic gases from air pollutants. Activated charcoal powder was compressed in the form of pellets and used in the designated conditions. The optimum operating conditions and material properties, such as adsorption capacity, effect of weight ratio of the mixture, and hardness, have been investigated after combining with the calcium derivative. The good performance exhibited in this study suggests that this material is expected to be an effective and economically viable adsorbent for $NH_3$, $CO_2$, and $H_2S$ removal from the air system.

Effect of Boric Acid Treatment on the Electrochemical Properties of the Phenol-Based Activated Carbon (페놀계 활성탄소의 전기화학 특성에 미치는 붕산 처리의 영향)

  • Jung, Min-Jung;Yu, Hye-Ryeon;Lee, Dayoung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.201-207
    • /
    • 2013
  • In this study, the surface of a phenol based activated carbon (AC) used as an electrode in an electric double layer capacitor was modified via boric acid treatment for the capacitance investigation. The effect of boric acid treatment on electrochemical performance was also investigated. The AC surface functional groups ratio of quinone-like (O=C) which is electrochemical active functional groups was increased after the boric acid treatment. And, boric acid treated AC showed an increase in the specific surface area, total pore volume, and micropore volume. In case of optimum boric acid treated AC, its specific capacitance increased by 20% in comparison to that of untreated AC. These results demonstrate that a boric acid treated carbon surface-based electric double layer capacitor electrode effectively enhances specific capacitance.

A Study on Adsorption Characteristics of Benzene over Activated Carbons Coated with Insulating Materials and Desorption by Microwave Irradiation (절연물질이 코팅된 활성탄의 벤젠 흡착특성 및 마이크로파에 의한 탈착에 관한 연구)

  • Kim, Ki-Joong;Ahn, Ho-Geun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.445-451
    • /
    • 2008
  • In order to regenerate the activated carbon polluted by volatile organic compounds (VOCs) using microwave, adsorption and desorption characteristics of benzene over activated carbon (AC) coated with insulating materials were investigated. Physical characteristics of activated carbon and insulator-coated ACs were investigated by means of $N_2$ gas adsorption and scanning electron microscopy (SEM). The amount of VOC adsorbed showed a positive relationship with the specific surface area of the ACs, and spark discharge over insulator-coated ACs did not occur. Potassium silicate (PS) was the best binder for coating of insulating materials on AC. Amount of benzene desorbed by microwave irradiation was dependent on output power of microwave. Nearly same performance was obtained even though the adsorption-desorption operation under microwave irradiation was repeated 5 times. Finally, it was known that the microwave heating was a very effective mean for regenerating the polluted AC.

Usage of Coal in the Paradigm Shift toward Sustainable Energy (지속가능 에너지 패러다임 변화속에서 석탄의 활용)

  • Park, Jay Hyun;Yang, In Jae;Lee, Jin Soo;Lee, Cheong Ryong
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.793-807
    • /
    • 2020
  • The policy for Green New Deal will promote the shift of the application to coal as feedstock from coal as fuel. Coal can be used as fuel for production of hydrogen and as feedstock materials such as synthetic graphite or activated carbon. Hydrogen is obtained from syngas produced through Steam carbon(SC), Water-Gas Shift(WGS), and Carbonation reactions, and these processes should be used in conjunction with CO2 sequestration technology. Anthracite has a potential in terms of cost advantage as a feedstock compared to a petroleum pitch, because Synthetic graphite is prepared by heat treating an anthracite with high rank to a graphitization temperature which is in the range of 2400~2800℃, in the presence of inorganic catalyst such as silicon or iron. From several studies, it has been confirmed that coal-based activated carbon(AC) is manufactured with quality similar to the large specific surface area and much micropore volume of lignin-based AC, can be prepared. Therefore it is expected that lignin-based AC is replaced to coal-based AC.

Effect of Surface-Modification of Activated Carbon for Adsorption of Uranium in Radioactive Liquid Wastes (방사성 액체 폐기물 내 우라늄 흡착에 대한 활성탄의 표면 처리 영향)

  • Jang, J.D.;Lee, K.W.;Song, K.C.;Kang, H.;Oh, W.Z.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.827-835
    • /
    • 2000
  • Adsorption characteristics of uranium on activated carbon whose surface is modified with $HNO_3$ and/or NaOH were investigated. Na-OAC, which was the activated carbon treated with both $HNO_3$ and NaOH. showed higher adsorption capacity than OAC, which was treated with $HNO_3$, as well as Na-AC, which was treated with only NaOH. This can be explained based on the surface functional groups increased by surface modification of activated carbon and the change of solution pH as adsorption proceeds. From these experimental results, it is thought that the pH of uranium solution and surface functional groups on the activated carbon surface are the governing factors in the uranium adsorption system.

  • PDF