• 제목/요약/키워드: ABS system

검색결과 299건 처리시간 0.029초

제동압력 제한밸브의 모터싸이클 ABS에의 적용 (Application of a Brake Pressure Restriction Valve to a Motorcylce ABS)

  • 지동익;류제하;김호수;임재우;박종혁
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.130-136
    • /
    • 2001
  • This paper presents an of a brake pressure restriction valve to a motorcycle anti-lock brake system(ABS). In the conventional anti-lock brake system of automobiles, slip ratio as a control variable is actively controlled, which requires wheel speed sensors, ECU, and a pressure modulator. In the ABS valve that has been developed for use in motorcycles, however, the brake pressure that is close to the wheel locking pressure is preset by simple exercises and then the valve just allows to pass the wheel locking pressure and cutoff the remaining pressure. Simulation studies with a single wheel braking dynamics and lumped chassis model show that the pressure restriction valve has basic ABS functions as well as some robustness properties for the uncertain load and road conditions as well as various initial braking speeds. Field tests also show that the pressure restriction valve avoids the wheel locking effectively.

  • PDF

적응제어 기법을 적용한 ABS의 바퀴 슬립 제어 (Wheel Slip Control of ABS Using Adaptive Control Method)

  • 최종환
    • 한국기계가공학회지
    • /
    • 제5권3호
    • /
    • pp.71-79
    • /
    • 2006
  • ABS is a safety device for preventing wheel locking in a sudden baking. Its control methods are classified into three types; deceleration control, wheel slip control and deceleration/acceleration control. The braking force takes the influence of the friction coefficient between road and tire, which in turn depends on the wheel slip as well as road conditions. In this paper, it has been proposed the wheel slip control system to apply the adaptive control method at the ABS. To maintain wheel slip to desired wheel slip, it have been done the linearization and designed the adaptive controller to apply gradient method based on the reference model. It is illustrated by computer simulations that the proposed control system gives good performances and adaptation to parameter variation.

  • PDF

ABS와 Non-ABS 승용차량의 급제동시 마찰계수 변화 (Friction Coefficient of Emergency Braking on ABS and Non-ABS Car)

  • 김기남;이지훈;옥진규;유완석;박지영
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.52-59
    • /
    • 2008
  • Most accident reconstruction or analysis depend on the coefficient of friction to estimate the vehicle speeds. Skid mark and coefficient of friction are usually utilized to calculate the velocity and behavior of vehicles. For a critical case such as traffic accident reconstruction, however, the initial velocity of the car should be calculated precisely. In this paper, emergency brake tests on ABS and Non-ABS brake system are conducted on the dry pavement asphalt road on speed 40, 60, 80 and 100 km/h respectively. The SWIFT sensor was established in the front wheel and rear wheel at driver side to measure the forces, moments and speeds of revolution of the tires. These tests results can be available to brake tests and accident reconstruction.

PWM 제어에 의한 솔레노이드-유량제어방식 ABS의 제동압력 특성 (Braking Pressure Characteristics of Solenoid-Flow Control Type ABS by PWM Control)

  • 송창섭;양해정
    • 한국정밀공학회지
    • /
    • 제14권8호
    • /
    • pp.146-154
    • /
    • 1997
  • Solenoid-folw control type ABS is used with a 'dump and reapply' pressure control arrangement instead of using 2/2 (normal open/close) solenoid valves in convensional systems(sol. -sol. control type), a flow control valve is used which replaces the (no) inlet valve. The flow control valve controls fluid flow providing a nearly constant reapply rate( .theta. ) after the dump plase of ABS operation. In this study, to investigate a characteristics of brake pressure by PWM control, test rig was consisted of ABS hydraulic modulator, digital controller, pneumatic power supply and brake master cylinder. For comparison with experi- mental results, system modelling and computer simulation were performed. As a result, experiment results showed fairly agreement with the simulation. Also, it is shown that the pressure gradient (tan .theta. ) is affected by pressure, frequency, duty ratio and expressed with an exponential funtion.

  • PDF

HILS Rig 시험을 통한 실차 ABS 실내작동소음 예측 기법에 대한 연구 (Research on Correlation Method of ABS Interior Operational Noise via HILS Rig Test)

  • 김승환;육지용;한민규;전남일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.483-488
    • /
    • 2013
  • The psychoacoustic quality of ABS is now considered more important than before as the focus of recent ABS function is expanded to basic function from typical emergency function. Thus, the automotive parts manufacturing companies are actively working to improve NVH (Noise, Vibration, and Harshness) in ABS module. In terms of time, test place, and cost, however, it is very inefficient to have all the operating noise validation test in real vehicle configuration especially for partially improved ABS module. To contribute to reducing the development period and to grasping the improvements faster, this research presents the study of a correlation to predict ABS operating noise inside vehicle via HILS rig test. The regression equation in this paper was statistically drawn from using Minitab S/W, and based on that equation, the noise spectrum of vehicle interior was analogized.

  • PDF

전자밸브를 이용한 ABS 슬립율 제어에 관한 연구 (A Study of ADS Slip Ratio Control using Solenoid Valve)

  • 최종환;김승수;양순용;박성태;이진걸
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.676-681
    • /
    • 2001
  • ABS is a safety device, which adds hydraulic system to the existing brake system to prevent wheel from locking, so we can obtain maximum braking force on driving. The hydraulic system to control braking pressure consists of sol-flow type using solenoid valve, flow control valve or consists of sol-sol type using two solenoid valve. In this paper, the hydraulic system in ABS is composed of sol type using a 3port-2position solenoid valve, and vehicle system is composed of 1/4 vehicle model. And slip ratio is controlled using PWM (Pulse-Width-Modulation) control algorithm. Braking friction coefficient and tracking friction coefficient which are described by slip ratio's function have maximum value when slip ratio has its value from 0.1 to 0.3. And slip ratio is controlled constantly in this boundary value even in the variation of road's condition in some boundary.

  • PDF

슬립률을 이용한 상용차용 공압식 브레이크 기반 ABS 알고리즘 개발 (Anti-lock Braking System for Commercial Vehicles with Pneumatic Brake System by Using Slip Ratio)

  • 김자유;권백순;이경수
    • 자동차안전학회지
    • /
    • 제12권2호
    • /
    • pp.21-26
    • /
    • 2020
  • This paper presents an anti-lock braking system for commercial vehicles with pneumatic brake system by using slip ratio. By virtue of system reliability, most commercial vehicles adopt pneumatic brake system. However, pneumatic brake systems control is more difficult than hydraulic systems due to a longer time delay and the system nonlinearity. One of the major factors in generating braking forces is the wheel slip ratio. Accordingly, the proposed ABS strategy employs the slip ratio threshold-based valve on/off control. This threshold-based algorithm is simple but effective to control the pneumatic brake systems. The control performance of the proposed algorithm has been validated via simulation studies using MATLAB/Simulink and Trucksim. The results show ABS by using slip ratio reduces the braking distance and improves vehicle control.

농업수자원으로서의 흡수성 Biofilter 처리수 재이용 (Reuse of Treated Sewage Water from Absorbent Biofilter System as Agricultural Water Resources)

  • 권순국;김현욱;권용웅;조영현;박상원;임경래
    • 한국농공학회지
    • /
    • 제45권5호
    • /
    • pp.151-159
    • /
    • 2003
  • Absorbent Biofilter Systems (ABS), composed of an anaerobic septic tank, a pump chamber and an absorbent biofilter tank, have been found to economically provide rural on-site wastewater treatment. This study was conducted to assess the potential of ABS effluent as an alternative water resource for agricultural and environmental use, with respect to the removal of pathogenic microorganism and their fertilization effect. A pilot scale ABS was used to compare its removal efficiency of pathogens from effluent water. Overall, more than 95 percent of Salmonella and E. coli were removed. This result demonstrates that a significant reduction in the pathogenic microorganism of effluents can occur in ABS, which implies the feasibility for the use of ABS effluent in agriculture and environment, with the provision of a further simple disinfection step, in order to satisfy the WHO guidelines for the microbiological quality in agriculture. In addition, because of the abundant nutritional content of ABS effluent, the substitution effect of fertilizer (N, P and K) in paddy irrigation, i.e. 2/3 for nitrogen, l/3 for phosphorus and 1/5 for potassium would be expected. Based on the experimental data, the ABS effluent could be used as a new alternative water resource for paddy irrigation, as well as for environmental purposes, such as supplying water to ecological parks in rural villages.

VDC 장착 차량의 기동 특성에 관한 연구 (A Study on the Performance Characteristics of the VDC Vehicle)

  • 김태기;박윤기;서명원
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.146-157
    • /
    • 1999
  • Safety systems for road vehicles have been rapidly developed in recent years. Especially, the VDC(Vehicle dynamics Control) system is a new active safety system for road vehicles which controls its dynamic vehicle motion in emergency situations . In the case of configuring the VDC system by utilizing the ABS(Anti-lock Brake System), the role of a control logic which directly influences the vehicle motion is very important. In this study the performance of the VDC vehicle was compared to the performances of the CBS (Conventional Brake system )and ABS vehicle. For various driving conditions , the simulation of vehicle dynamics with known VDC control logics was performed. Analysis results showed the VDC vehicle could stably perform even on the road of low coefficient of friction. In addition it was shown that the basic control logic for the VDC system could outstandingly improve driving stability in the case of braking as well as constant speed cruising.

  • PDF

최소자승법에 의한 ABS(Antilock Braking System)의 모델링 및 파라미터 평가 (Modeling and Parameter estimation of Antilock Braking System)

  • 송창섭;노형우
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.87-92
    • /
    • 2002
  • By using the signal error test, model structure of total antilock braking system consisting of electromagnetic system and hydraulic system is determined as 9th order system. For determining parameters of the ABS, using time discrete model of parametric method, parameters in time discrete model are searched by least square method. By bilinear transform, we have found the model of ABS in s domain. Afterward, experimental output data is compared with simulated output data by MATLAB haying identified parameter. As the result, experimental data is agreed with simulated data very well.