• Title/Summary/Keyword: ABS polymerization

Search Result 4, Processing Time 0.017 seconds

Conducting Characteristics of ABS/PPy Composite Film Prepared by Electrochemical Polymerization (전기화학적 중합으로 제조된 ABS/PPy 복합 박막의 전도특성)

  • Kim, J.;Yoon, D.Y.;Kim, D.H.;Han, C.;Kim, S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.164-167
    • /
    • 2002
  • ABS/Polypyrrole composite film has been synthesized by means of electrochemical polymerization in order to enhance the oxidant stability by using ABS(Acrylonitrile-Butadiene-Strene) as a host-polymer. While the acetonitrile as a solvent swells the host-polymer ABS on Pt plate, and then the pyrrole in an electrolyte penetrates the Pre-coated ABS film during electrochemical Polymerization. Comparing with the sin91e-component Polypynole film, the resulting conducting ABS/PPy composite nim shows the good reliability for the uniform resistance and the enhancement of the oxidant stabilization.

Study on Fabrication and Thermal Properties of the ABS/silicate Composites (ABS/실리케이트 복합체의 제조 및 열적특성 연구)

  • Youn, Lee-Seol;Kim, Youn-Cheol
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.301-305
    • /
    • 2011
  • ABS/silicate composites with different clay types and compositions were prepared by in situ emulsion polymerization. The chemical structure of ABS was confirmed by the change of C-H stretching peak(near 3000 $cm^{-1}$) in fourier transform-infrared(FT-IR) spectrum. The thermal properties of the ABS/silicate composites were investigated by differential scanning calorimetry(DSC) and thermogravimetric analyzer(TGA). There was no distinct change in glass transition temperature of the ABS/silicate composites with different clay types. TGA curve indicates a dramatic increase in degradation temperature in case of ABS/20A composite with 3 wt% 20A. The silicate dispersion in the composites was measured by X-ray diffraction(XRD). The silicate dispersion in ABS/20A composites depended on the 20A composition. XRD results showed that the diffraction peak of the ABS/20A composite appeared when the content of 20A was higher than 5 wt%.

Process Design for Recovery of Unreacted Styrene Monomer for Utility Saving (유틸리티 절감을 위한 미반응 스티렌 모노머 회수공정의 설계)

  • Bong, Jooyoung;Na, Sujin;Lee, Kwang soon
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.54-59
    • /
    • 2017
  • A study for process design to curtail the utility consumption during residual styrene monomer recovery in an ABS polymerization process was carried out. Among different techniques for residual monomer recovery, the steam stripping is dominantly employed in industries. The existing process, however, consumes a large amount of utility (steam and cooling water), and this study focused on the design of a new process that can substantially spare the utility consumption. A new process was configured to utilize the latent heat of the stripping steam, which is condensed with the monomer using cooling water after exiting the stripper. The condenser was modified to use vacuum state water as coolant and to generate vacuum state steam using the latent heat of the stripping steam. The steam is injected to the stripper as the stripping steam after upgrading using a compressor. Through this modification, consumption of steam and also cooling water could be significantly reduced at some expense of electricity for compressor operation.

Reaction heat estimation of industrial batch reactors (산업용 회분식 반응기에서의 반응열 추정)

  • 방성호;이대욱;이광순;이석호;손종상;윤상철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.595-600
    • /
    • 1993
  • The heat of reaction has been estimated from heat balance relationships around the reactor. The heat balance equations were formulated with the assumptions that the reactor temperature is uniformly distributed and the jacket temperatures are axially distributed. We have obtained the temperature distribution of jacket contents by FDM. And then, we have rearranged the heat balance equations so that the heat of reaction can be estimated from the finite number of temperature measurements, i.e., temperatures of the reactor contents, at the jacket inlet and outlet, respectively. The proposed method for reaction heat estimation on were applied to industrial batch reactors ; one is ABS polymerization reactor and the other is SAN polymerization reactor. We have also examined the variation of overall heat transfer coefficients for the reactors during reaction.

  • PDF