• Title/Summary/Keyword: ABS Driving Method

Search Result 8, Processing Time 0.026 seconds

A Study on the Modelling and Control Method of an Anti - lock Brake System

  • Ki, Lim-Chul;Hoon, Song-Jeong;Suck, Boo-Kwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.112-112
    • /
    • 2001
  • An Anti-lock Brake System ABS is developed to increase the stability of vehicle and to reduce the stopping distance when braking manoeuvres by measuring the wheel and vehicle speed. An ABS mathematical model which describes the dynamics of vehicle and calculate the stopping distance, is explained in this paper. To proceed this study, a mathematical model is produced with simulink software package. Although the model considered here is relatively simple, it retains the essential dynamics of the system. The results are evaluated at the various driving or road conditions. The results from mathematical model show that ABS reduces the stopping distance at the various road conditions. This mathematical model could be ...

  • PDF

Development of the SVPG(Sungkyunkwan Univ. Virtual Proving Ground) : System Configuration and Application of the Virtual Proving Ground (가상주행시험장(SVPG) 개발: 가상주행시험장의 시스템 구성 및 운영)

  • 서명원;구태윤;권성진;신영수;조기용;박대유
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.195-202
    • /
    • 2002
  • By using modeling and simulation. today's design engineers are simultaneously reducing time to market and decreasing the cost of development, while increasing the quality and reliability of their products. A driving simulator is the best example of this method and allows virtual designs of control systems, electronic systems, mechanical systems and hydraulic system of a vehicle to be evaluated before costly prototyping. The objective of this Paper is to develop the virtual Proving: ground using a driving simulator and to show its capabilities of an automotive system development tool. For this purpose, including a real-time vehicle dynamics analysis system, the PC-based driving simulator and the virtual proving ground are developed by using VR(Virtual Reality) techniques. Also ABS HIL(Hardware-In-the-Loop ) simulation is performed successfully.

RESISTANCE ESTIMATION OF A PWM-DRIVEN SOLENOID

  • Jung, H.G.;Hwang, J.Y.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.249-258
    • /
    • 2007
  • This paper proposes a method that can be used for the resistance estimation of a PWM (Pulse Width Modulation)-driven solenoid. By using estimated solenoid resistance, the PWM duty ratio was compensated to be proportional to the solenoid current. The proposed method was developed for use with EHB (Electro-Hydraulic Braking) systems, which are essential features of the regenerative braking system of many electric vehicles. Because the HU (Hydraulic Unit) of most EHB systems performs not only ABS/TCS/ESP (Electronic Stability Program) functions but also service braking function, the possible duration of continuous solenoid driving is so long that the generated heat can drastically change the level of solenoid resistance. The current model of the PWM-driven solenoid is further developed in this paper; from this a new resistance equation is derived. This resistance equation is solved by using an iterative method known as the FPT (fixed point theorem). Furthermore, by taking the average of the resistance estimates, it was possible to successfully eliminate the effect of measurement noise factors. Simulation results showed that the proposed method contained a sufficient pass-band in the frequency response. Experimental results also showed that adaptive solenoid driving which incorporates resistance estimations is able to maintain a linear relationship between the PWM duty ratio and the solenoid current in spite of a wide variety of ambient temperatures and continuous driving.

A Study on Development of Real-Time Simulator for Electric Traction Control System (TCS(Traction Control System)을 위한 실시간 시뮬레이터 개발에 관한 연구)

  • Kim, Tae Un;Cheon, Seyoung;Yang, Soon Young
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.67-74
    • /
    • 2019
  • The automotive market has recently been investing much time and costs in improving existing technologies such as ABS (Anti-lock Braking System) and TCS (Traction Control System) and developing new technologies. Additionally, various methods have been applied and developed to reduce this. Among them, the development method using the simulation has been mainly used and developed. In this paper, we have studied a method to develop SILS (Software In the Loop Simulation) for TCS which can test various environment variables under the same conditions. We modeled hardware (vehicle engine and ABS module) and software (control logic) of TCS using MATLAB/Simulink and Carsim. Simulation was performed on the climate, road surface, driving course, etc. to verify the TCS logic. By using SILS to develop TCS control logic and controller, it is possible to verify before production and reduce the development period, manpower and investment costs.

Design of a Robust Controller to Enhance Lateral Stability of a Four Wheel Steer Vehicle with a Nonlinear Observer (비선형 관측기를 이용한 사륜조향 차량의 횡방향 안정성 강화를 위한 강인 제어기 설계)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.120-127
    • /
    • 2007
  • This paper describes the development of a nonlinear observer for four wheel steer (4WS) vehicle. An observer is designed to estimate the vehicle variables difficult to measure directly. A brake yaw motion controller (BYMC), which uses a PID control method, is also proposed for controlling the brake pressure of the rear and inner wheels to enhance lateral stability. It induces the yaw rate to track the reference yaw rate, and it reduces a slip angle on a slippery road. The braking and steering performances of the anti-lock brake system (ABS) and BYMC are evaluated for various driving conditions, including straight, J-turn, and sinusoidal maneuvers. The simulation results show that developed ABS reduces the stopping distance and increases the longitudinal stability. The observer estimates velocity, slip angle, and yaw rate of 4WS vehicle very well. The results also reveal that the BYMC improves vehicle lateral stability and controllability when various steering inputs are applied.

Estimator Design for Road Friction Coefficient and Body Sideslip Angle for Use in Vehicle Dynamics Control Systems (차량 동역학 제어기를 위한 노면 마찰계수 및 차체 미끄럼각 추정기 설계)

  • 박기홍;허승진;백인호;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.176-184
    • /
    • 2001
  • The VDC(Vehicle Dynamics Control) is a control system whose target is to improve vehicle stability under critical motion. The system has a good potential of becoming a standard active safety unit in passenger vehicles since it can be implemented on top of the ABS/TCS system with little extra cost. This, however, is possible only when the signals that the VDC system demands can be obtained with sufficient accuracy. In this research, estimators for the road friction coefficient and body sideslip angle have been designed. The two variables have great influence upon performance of the VDC system but not directly measurable. For the estimator design, the Newton method and the nonlinear observer theory have been exploited. The performance of the estimator have been verified via simulations on critical driving conditions.

  • PDF

A Study on the Characteristics of Reset Discharge in the ADS Driving Method for the PDPs (PDP의 ADS 구동방식에서의 초기화 방전특성에 관한 연구)

  • 염정덕
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.17-22
    • /
    • 2003
  • The priming discharge characteristic at the reset period in the ADS drive method of PDP was experimentally analyzed in this research. The amount of wall charge accumulated by the discharge and the accumulated time are unrelated to the priming pulse width. The self-erase discharge by excessive wall charge is related to the amount of wall charge by the priming discharge and this is related to space charge generated by the priming discharge. From the experimental result, in the optimized priming condition the plus width is 8$mutextrm{s}$ and the voltage is about 163V. The space charge which helps the self-erase discharge exists during about 16$mutextrm{s}$ immediately after generating the priming discharge. Therefore, it is suitable within 16$mutextrm{s}$ of the priming pluse width for the effective reset process.

A Study on Feedback Queue Generation Method in Police Motorcycle Simulator System (경찰 오토바이 시뮬레이터 시스템에서 피드백 큐 생성 방법에 관한 연구)

  • Ahn, Dong-Hyuk;Cho, Sung-Hyun;Jeong, Yang-Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.827-836
    • /
    • 2018
  • In this study, we developed a PC - based motorcycle simulator based on the development technology of a virtual patrol motorcycle training system. This simulator has been developed to be applied to a variety of fields such as driving training for beginners, driver factor research, and system development such as ABS, which can be seen in advanced models. The weight of the motorcycle operated by the patrol guards is more than 400Kg. There is a lot of risk due to the nature of work without prior practice. Therefore, we implemented a study on the untilization of physical stress and temporal pressure in emergency situations. In order to get a feeling that the motorcycle simulator is operating in real-life, it is important that the mutual reliable signal transmission and operation feel between the driver and the simulator. In order to achieve this, we developed a system that can apply the sub-systems of the actual vehicle to the motorcycle simulator in order to generate the same operation feeling as the actual vehicle. Based on these results, we have developed a method of generating a feedback queue.