• Title/Summary/Keyword: ABCD Rainfall Runoff model

Search Result 6, Processing Time 0.022 seconds

Application of Monthly Water Balance Models for the Climate Change Impact Assessment (기후변화 영향평가를 위한 월 물수지모형의 적용성 검토)

  • Hwang, Jun-Shik;Jeong, Dae-Il;Lee, Jae-Kyoung;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.2 s.175
    • /
    • pp.147-158
    • /
    • 2007
  • This study attempted to determine a suitable hydrologic model for assessing the impact of climate change on water resources, and to assess the accuracy of streamflow scenarios simulated by the selected hydrologic model using the meteorological scenarios of the Seoul National University Regional Climate Model(SNURCM). Comparison of four water balance models and two daily conceptual rainfall-runoff models for the simulation capability of the Daecheong Dam inflow indicated that the abcd model performs the best among the tested water balance models and performs as well as SSARR that is popular as a daily rainfall-runoff model in Korea. Parameters of the abcd model were then estimated for 12 ungauged subbasins of the Geum River by the regionalization method. The model parameters were first calibrated at nine multi-purpose dams and were then regionalized using catchment characteristics for another four multi-purpose dams, which were assumed to be ungauged sites. The model efficiency(ME) coefficients of the simulated inflows for these four dams were at least 87%. The MEs of the hindcasted meteorological rainfall scenarios of the 12 subbasins of the Geum River were more than 60%. Moreover, the ME of the Daecheong Dam inflow simulated by the abcd model using the SNURCM rainfall scenarios was more than 80%. Therefore, this research concluded that the abcd model coupled with the SNU-RCM meteorological scenarios can be used for impact assessment studies of climate change on water resources.

Development and evaluation of dam inflow prediction method based on Bayesian method (베이지안 기법 기반의 댐 예측유입량 산정기법 개발 및 평가)

  • Kim, Seon-Ho;So, Jae-Min;Kang, Shin-Uk;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.489-502
    • /
    • 2017
  • The objective of this study is to propose and evaluate the BAYES-ESP, which is a dam inflow prediction method based on Ensemble Streamflow Prediction method (ESP) and Bayesian theory. ABCD rainfall-runoff model was used to predict monthly dam inflow. Monthly meteorological data collected from KMA, MOLIT and K-water and dam inflow data collected from K-water were used for the model calibration and verification. To estimate the performance of ABCD model, ESP and BAYES-ESP method, time series analysis and skill score (SS) during 1986~2015 were used. In time series analysis monthly ESP dam inflow prediction values were nearly similar for every years, particularly less accurate in wet and dry years. The proposed BAYES-ESP improved the performance of ESP, especially in wet year. The SS was used for quantitative analysis of monthly mean of observed dam inflows, predicted values from ESP and BAYES-ESP. The results indicated that the SS values of ESP were relatively high in January, February and March but negative values in the other months. It also showed that the BAYES-ESP improved ESP when the values from ESP and observation have a relatively apparent linear relationship. We concluded that the existing ESP method has a limitation to predict dam inflow in Korea due to the seasonality of precipitation pattern and the proposed BAYES-ESP is meaningful for improving dam inflow prediction accuracy of ESP.

A Study on the Application of Thomas Monthly Runoff Prediction Model for Ungauged Watersheds (Thomas 월 유출모형의 미계측 영역 적용에 관한 연구)

  • 김원석;윤용남;최영박
    • Water for future
    • /
    • v.24 no.4
    • /
    • pp.85-91
    • /
    • 1991
  • An effort was made to develop a monthly runoff predition method based on the Thomas model. For the 20watersheds selected the Thomas model was fitted, the parameters being determined by the Rosenbrok's rotating coordinate search method using the monthly rainfall and runoff data. The so determined parameters were correlated with the meteorologic, topographic and geologic characteristics of the watersheds. The model was tested by comparing the observed and simulated monthly runoff records from two test watersheds. The result showed that the model developed in the present study could satisfactorily be applied to ungauged watersheds It was noticed that the model had the tendency of slightly overestimating the runoff during winter periond and underestimating during the spring period.

  • PDF

An analysis of effects of seasonal weather forecasting on dam reservoir inflow prediction (장기 기상전망이 댐 저수지 유입량 전망에 미치는 영향 분석)

  • Kim, Seon-Ho;Nam, Woo-Sung;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.451-461
    • /
    • 2019
  • The dam reservoir inflow prediction is utilized to ensure for water supply and prevent future droughts. In this study, we predicted the dam reservoir inflow and analyzed how seasonal weather forecasting affected the accuracy of the inflow for even multi-purpose dams. The hindcast and forecast of GloSea5 from KMA were used as input for rainfall-runoff models. TANK, ABCD, K-DRUM and PRMS models which have individual characteristics were applied to simulate inflow prediction. The dam reservoir inflow prediction was assessed for the periods of 1996~2009 and 2015~2016 for the hindcast and forecast respectively. The results of assessment showed that the inflow prediction was underestimated by comparing with the observed inflow. If rainfall-runoff models were calibrated appropriately, the characteristics of the models were not vital for accuracy of the inflow prediction. However the accuracy of seasonal weather forecasting, especially precipitation data is highly connected to the accuracy of the dam inflow prediction. It is recommended to consider underestimation of the inflow prediction when it is used for operations. Futhermore, for accuracy enhancement of the predicted dam inflow, it is more effective to focus on improving a seasonal weather forecasting rather than a rainfall-runoff model.

Uncertainty assessment of ensemble streamflow prediction method (앙상블 유량예측기법의 불확실성 평가)

  • Kim, Seon-Ho;Kang, Shin-Uk;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.523-533
    • /
    • 2018
  • The objective of this study is to analyze uncertainties of ensemble-based streamflow prediction method for model parameters and input data. ESP (Ensemble Streamflow Prediction) and BAYES-ESP (Bayesian-ESP) based on ABCD rainfall-runoff model were selected as streamflow prediction method. GLUE (Generalized Likelihood Uncertainty Estimation) was applied for the analysis of parameter uncertainty. The analysis of input uncertainty was performed according to the duration of meteorological scenarios for ESP. The result showed that parameter uncertainty was much more significant than input uncertainty for the ensemble-based streamflow prediction. It also indicated that the duration of observed meteorological data was appropriate to using more than 20 years. And the BAYES-ESP was effective to reduce uncertainty of ESP method. It is concluded that this analysis is meaningful for elaborating characteristics of ESP method and error factors of ensemble-based streamflow prediction method.

Development of weekly rainfall-runoff model for drought outlooks (가뭄전망을 위한 주간 강우-유출 모형의 개발 및 적용)

  • Kang, Shinuk;Chun, Gunil;Nam, Woosung;Park, Jinhyeog
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.214-214
    • /
    • 2019
  • 가뭄이 '심함' 단계 이상 도달 시에는 매주 수문분석을 수행하여 가뭄전망을 수행하여야 한다. 이를 위해서는 기상청의 강수량과 기온 등의 기상예측 자료가 필요하다. 현재 기상청에서는 3개월 기상전망으로 월단위 강수량과 평균기온을 매월 제공하고 있다. 1개월 전망에서 4주의 강수량합과 평균기온을 제공하고 있다. 하지만, 향후 4주간을 전망하는 1개월 전망에서는 1주단위의 강수량과 평균기온이 아닌, 4주간의 강수량합과 평균기온을 1주일 단위로 업데이트해 WINS에 제공하고 있다. 1주단위의 강수량과 평균기온을 취득하기 어려워, 평년 일단위 강수량과 평균기온 자료를 사용하여 4주간의 자료를 1주 단위로 분할하는 방법을 사용하였다. 주간단위 수문자료의 처리를 위해 국제표준기구(ISO)에서 제시하는 기준(ISO 8601)에 따랐다. ISO 8601은 월요일부터 일요일까지를 1주로 정의하며 현재 사용하고 있는 날짜체계와 1대1로 대응되도록 하였다. 예를 들면 1981년 2월 22일은 '1981-W07-7' 또는 '1981W077'로 표시한다. 표시된 형식은 1981년 7번째 주 일요일을 뜻한다. 이 기준에 따라 수문자료를 정리할 수 있도록 프로그램을 개발하였다. 주간 단위 잠재증발산량 계산은 월잠재증발산량 프로그램을 1주단위로 계산할 수 있도록 수정 및 보완하여 개발하였다. 수정 및 보완한 부분은 외기복사(外氣輻射)량 계산부분이다. 외기복사량은 지구가 태양을 1년 주기로 공전하므로 특정 위도에서 특정날짜에 따라 복사량이 달라지므로 주간단위의 월요일부터 일요일에 해당하는 날짜의 외기복사량을 각각 계산하고 이를 평균하여 주간단위 대푯값으로 사용하도록 하였다. 계산된 주간단위 외기복사량과 최고 최저기온을 입력하여 Hargreaves식에 의해 잠재증발산량을 계산한다. 융적설을 포함한 주단위 강우-유출 모형의 매개변수를 추정하기 위해 전국 24개 지점의 수문자료를 사용하였다. abcd 모형과 융적설모듈의 초기값 포함 11개 매개변수를 SCE-UA 전역최적화 알고리즘으로 추정하였다. 추정된 유역의 매개변수는 토양배수, 토양심도, 수문지질, 유역특성인자를 사용한 군집분석 결과에 의해 113개 중권역에 할당하였다. 개발된 주간단위 강우-유출 모형은 비교적 단기 가뭄전망을 위해 사용된다. 계산된 유량은 자연유량이며, 전국 취수장 수량, 하수처리장 방류수, 회귀수를 반영하여 지점별 유량을 계산하여 가뭄전망에 사용되고 있다.

  • PDF