• Title/Summary/Keyword: ABAQUS program

Search Result 338, Processing Time 0.026 seconds

Space Frame Integrated Design System based on PATRAN Database (PATRAN 데이타베이스를 기반으로 한 스페이스 프레임의 통합설계시스템)

  • Lee Jae Hong;Lee Joo Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.210-215
    • /
    • 1998
  • To design a space frame structure by the conventional method is not easy in practical sense since it is generally a three-dimensional complicated form, and stability and nonlinear problems are not easily checked in the design process. This paper describes two modules, the Model Generator which is based on PATRAN user interface that enables users to generate a complicated finite element model; the Optimum Design Module which analyzes output results of analysis program, and designs members of a space frame. The Model Generator is based on PCL while C++ language is used in the Optimum Design Module. Structural analysis is performed by using ABAQUS. All of these modules constitute Space Frame Integrated Design System. The Core of the system is PATRAN database, in which the Model Generator creates information of a finite element model. Then, PATRAN creates input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.

  • PDF

Experimental and numerical analysis of the punching behavior of RC isolated footings

  • Walid, Mansour;Sabry, Fayed;Ali, Basha
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.665-682
    • /
    • 2022
  • In the current study, punching behavior of Reinforced concrete (RC) isolated footings was experimentally and numerically investigated. The experimental program consisted of four half-scale RC isolated footing specimens. The test matrix was proposed to show effect of footing area, reinforcement mesh ratio, adding internal longitudinal reinforcement bars and stirrups on the punching response of RC isolated footings. Footings area varied from 1200×1200 mm2 to 1500×1500 mm2 while the mesh reinforcement ratio was in the range from 0.36 to 0.45%. On the other hand, a 3D non-linear finite element model was constructed using ABAQUS/standard program and verified against the experimental program. The numerical results agreed well with the experimental records. The validated numerical model was used to study effect of concrete compressive strength; longitudinal reinforcement bars ratio and stirrups concentration along one or two directions on the ultimate load, deflection, stiffness and failure patterns of RC isolated footings. Results concluded that adding longitudinal reinforcement bars did not significantly affect the punching response of RC isolated footings even high steel ratios were used. On the contrary, as the stirrups ratio increased, the ultimate load of RC isolated footings increased. Footing with stirrups ratio of 1.5% had ultimate load equal to 1331 kN, 19.6% higher than the bare footing. Moreover, adding stirrups along two directions with lower ratio (0.5 and 0.7%) significantly enhanced the ultimate load of RC isolated footings compared to their counterparts with higher stirrups ratio (1.0 and 1.5%).

The Orthotropic Plate Analysis of Stiffened Plataes with Open Ribs (개단면 리브를 갖는 보강판의 직교이방성 판 해석)

  • Chu, Seok Beom;Kim, Chang Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.701-710
    • /
    • 2002
  • An analysis program using orthotropic plate elements was developed to simplify the analysis of plates stiffened with open ribs and the orthotropic behavior of stiffened plates and the application of this program were evaluated using the sensitivity analysis and the parametric study. The inertial moment ratio, i.e., the ratio of the inertial moment of the rib to that of the plate was defined and the orthotropic behavior of stiffened plates corresponding to the inertial moment ratio was proved by the sensitivity analysis. To evaluate the application of this program, the parametric study for various types of stiffened plates was performed and then the maximum displacement of this study was compared to that of ABAQUS using isoparametric plate elements. The Results of this study agreed well with that of ABAQUS at the particular inertial moment ratio, that is proposed to the limit ratio of the orthotropic plate analysis and the correlative function between the error ratio and the inertial moment ratio was obtained. Therefore, the orthotropic plate analysis of stiffened plates with open ribs could have safe results over the limit ratio and also have good results simply by using the correlative function of this study.

Numerical Modelling of Vertical Drains Installed in Soft Deposit under Embankment (성토재 아래의 연약지반에 설치된 연직배수재의 수치모델링)

  • 이승래;김윤태
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.127-138
    • /
    • 1996
  • The in-situ consolidation behavior of drainage system-installed deposits has three dimensional characteristics. Therefore, for an approximate 2-D plane strain consolidation analysis, it is necessary to convert the 3-D spatial flow of actual cases into the laminar flow simulated by the 2-D plane strain model. . In this paper, in order to properly model the effect of three dimensional characteristics, an equivalent and efficient model has been applied in a finite element technique for the analysis of the drainage system-installed soil deposits. The equivalent two dimensional model involves equivalent permeabilities and drainage widths. To validate the equivalent two dimensional model, three dimensional analyses were per formed by using the ABAQUS program and the results of 3-D analyses were compared with those of the 2-D analyses. By using the proposed equivalent model, one may be able to appropriately predict the consolidation behavior of drainage system-installed soft deposits.

  • PDF

The study on the buckling instability of the expansion tube type crash energy absorber by using the FEM (FEM을 이용한 확관형 충돌에너지 흡수부재의 좌굴불안전성에 관한 연구)

  • Choi, Won-Mok;Jung, Hyun-Sung;Kwon, Tae-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.774-779
    • /
    • 2007
  • The crash energy absorbers used in the trains normally are classified into two types. The first is the structure type, which mainly used in not only the primary structure of train but also the crash energy absorbers at the critical accidents. The second is the module type, which just absorbs the crash energy independently and attached onto the structures of the trains. The expansion tube is widely used as the module type of the crash energy absorbers, especially in the trains that have a heavy mass. Since the crash energy is absorbed by means of expanding the tube in the radial direction, the features of the expansion tube have the uniform load during the compression. As the uniform load remains in sudden impact, the expansion tube is effective to decrease acceleration of passengers when the train accident occur. The buckling instability of the expansion tubes is affected by the boundary conditions, thickness and length of tube. In this study, the effects of the length and thickness of the expansion tubes under the arbitrary load on the buckling are studied using the ABAQUS/standard and ABAQUS/explicit, a commercial finite element analysis program, and then presents the guideline to design the expansion tubes. The analysis processes to compute the buckling load consist of the linear buckling analysis and the nonlinear post-buckling analysis. To analysis the nonlinear post-buckling analysis, the geometry imperfections are introduced by applying the linear buckling modes to nonlinear post-buckling analysis.

  • PDF

Flexural Strength of HSB Plate Girder with Compact or Noncompact Web Due to Inelastic Lateral-Torsional Buckling (조밀 또는 비조밀 복부판을 갖는 HSB 플레이트거더의 비탄성 횡비틀림좌굴에 의한 휨강도)

  • Shin, Dong Ku;Cho, Eun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.399-409
    • /
    • 2012
  • The flexural behavior of HSB plate girder with a non-slender web, due to inelastic lateral-torsional buckling, under uniform bending was investigated by the nonlinear finite element analysis. Both homogeneous sections fabricated from SM570-TMC, HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. The flanges and web of selected noncomposite I-girders were modeled as thin shell elements and the geometrical and material nonlinear finite element analysis was performed by the ABAQUS program. The steel was assumed as an elasto-plastic strain hardening material. Initial imperfections and residual stresses were taken into account and their effects on the inelastic lateral-torsional buckling behavior were analyzed. The flexural strengths of selected sections obtained by the finite element analysis were compared with the nominal flexural strengths from KHBDC LSD, AASHTO LRFD, and Eurocode and the applicability of these codes in predicting the inelastic lateral torsional buckling strength of HSB plate girders with a non-slender web was assessed.

Local Deformation Analysis of the Orthotropic Steel Bridge Deck Due to Wheel Loadings Using FSM and FEM (윤하중에 의한 강바닥판 교면포장의 종방향균열 관련 수치해석법 개발)

  • Jeong, Jin Seok;Jung, Myung Rag;Ock, Chang Kwon;Lee, Won Tae;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.243-251
    • /
    • 2016
  • Longitudinally structural cracks are sometimes observed in the pavement on steel plate deck bridges because traffic truck loadings can cause large local deformations of the thin deck plate stiffened by longitudinal and transverse beams. In this study, an improved finite strip method using flat-shell strip, prism, and link elements is presented to investigate local deformations of steel decks with pavements in which flexural and torsional stiffness effects of thin floor beams are rigorously taken into account. A simplified deck model extracted from steel plate-girder bridges is analyzed using the developed FSM and the commercial FE program, ABAQUS and also, their numerical results are compared and discussed.

Effect of plate properties on shear strength of bolt group in single plate connection

  • Ashakul, Aphinat;Khampa, Kriangkrai
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.611-637
    • /
    • 2014
  • A single plate shear connection, or shear tab, is a very popular shear connection due to its merit in ease of construction and material economy. However, problems in understanding the connection behavior, both in terms of strength and ductility, have been well-documented. Suggestions or design model for single plate connections in AISC Design Manual have been altered several times, with the latest edition settling down to giving designers pre-calculated design strength tables if the connection details agree with given configurations. Results from many full-scale tests and finite element models in the past suggest that shear strength of a bolt group in single plate shear connections might be affected by yield strength of plate material; therefore, this research was aimed to investigate and clarify effects of plate yield strength and thickness on shear strength of the bolt group in the connections, including the validity of using a plate thickness/bolt diameter ratio ($t_p/d_b$) in design, by using finite element models. More than 20 models have been created by using ABAQUS program with 19.0- and 22.2-mm A325N bolts and A36 and Gr.50 plates with various thicknesses. Results demonstrated that increase of plate thickness or plate yield strength, with the $t_p/d_b$ ratio remained intact, could significantly reduce shear strength of the bolt group in the connection as much as 15 percent. Results also confirmed that the $t_p/d_b$ ratio is a valid indicator to be used for guaranteeing strength sufficiency. Because the actual ratio recommended by AISC Design Manual is $t_p/d_b$ + 1.6 (mm) for connections with a number of bolts less than six and plate yield strength in construction is normally higher than the nominal value used in design, it is proposed that shear strength of a bolt group in single plate connections with a number of bolts equal or greater than seven be reduced by 15 percent and the $t_p/d_b$ ratio be limited to 0.500.

Thermal Analysis of a Horizontal Disposal System for High-level Radioactive Waste (수평 터널방식 고준위폐기물 처분시스템 주변 열 해석)

  • Choi, Heui-Joo;Kim, In-Young;Lee, Jong Youl;Kim, Hyun Ah
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.141-149
    • /
    • 2013
  • The thermal analysis is carried out for a geological disposal system developed for the final disposal of a ceramic high-level waste from pyroprocessing of PWR spent fuel. The horizontal disposal tunnel type is considered with the distance of 2 m between the disposal canisters and the tunnel spacing of 25 m. The temperature distributions around the disposal canisters are calculated for the horizontal tunnel based on the conceptual design. The thermal performance analysis is carried out using a FEM program, ABAQUS. The performance analysis shows that the peak temperature in a disposal system outside the disposal canister is lower than $100^{\circ}$, which meets the thermal criterion of the disposal system. According the analysis, the peak temperature for the disposal canister located boundary of the disposal system is lower by $3^{\circ}$ than that for the canister at the central area. This implies the disposal density can be improved by locating more disposal canisters along the boundary.

Finite Element Analysis of H-Shaped Compressive Member Exposed High Temperatures (고온에 노출된 H-형강 압축재의 유한요소해석)

  • Lee, Swoo-Heon;Lee, Hee-Du;Choi, Jun-Ho;Shin, Kyung-Jae
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.54-59
    • /
    • 2016
  • Steel is a structural material that is inherently noncombustible. On the other hand, it has high thermal conductivity and the strength and stiffness of the material are reduced significantly when exposed to fire or high temperatures. Because the yield strength and modulus of elasticity of steel are reduced by 70% at $350^{\circ}C$ and less than 50% at $600^{\circ}C$, the load-carrying capacity of steel structure at high temperature rapidly lose. To be accepted as a fire-resisting construction, the fire test should be performed at the certificate authority. On the other hand, the fire test on a full-scale structure is limited by time, space, and high-cost. The analytical method was verified by a comparison with the fire test of H-section columns under compression and thermal analysis based on a finite element method using the ABAQUS program, and the numerical analysis method reported in this study was suggested as a complement of an actual fire test.