Browse > Article
http://dx.doi.org/10.12989/scs.2022.45.5.665

Experimental and numerical analysis of the punching behavior of RC isolated footings  

Walid, Mansour (Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University)
Sabry, Fayed (Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University)
Ali, Basha (Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University)
Publication Information
Steel and Composite Structures / v.45, no.5, 2022 , pp. 665-682 More about this Journal
Abstract
In the current study, punching behavior of Reinforced concrete (RC) isolated footings was experimentally and numerically investigated. The experimental program consisted of four half-scale RC isolated footing specimens. The test matrix was proposed to show effect of footing area, reinforcement mesh ratio, adding internal longitudinal reinforcement bars and stirrups on the punching response of RC isolated footings. Footings area varied from 1200×1200 mm2 to 1500×1500 mm2 while the mesh reinforcement ratio was in the range from 0.36 to 0.45%. On the other hand, a 3D non-linear finite element model was constructed using ABAQUS/standard program and verified against the experimental program. The numerical results agreed well with the experimental records. The validated numerical model was used to study effect of concrete compressive strength; longitudinal reinforcement bars ratio and stirrups concentration along one or two directions on the ultimate load, deflection, stiffness and failure patterns of RC isolated footings. Results concluded that adding longitudinal reinforcement bars did not significantly affect the punching response of RC isolated footings even high steel ratios were used. On the contrary, as the stirrups ratio increased, the ultimate load of RC isolated footings increased. Footing with stirrups ratio of 1.5% had ultimate load equal to 1331 kN, 19.6% higher than the bare footing. Moreover, adding stirrups along two directions with lower ratio (0.5 and 0.7%) significantly enhanced the ultimate load of RC isolated footings compared to their counterparts with higher stirrups ratio (1.0 and 1.5%).
Keywords
cracks pattern; experimental study; numerical analysis; punching shear; RC footing; stiffness; strain development;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Abbass, W., Khan, M.I. and Mourad, S. (2018), "Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete", Construct. Build. Mater., 168, 556-569. https://doi.org/10.1016/j.conbuildmat.2018.02.164.   DOI
2 Abdrabbo, F., Mahmoud, Z.I. and Ebrahim, M. (2016), "Structural design of isolated column footings", Alexandria Eng. J., 55, 2665-2678. https://doi.org/10.1016/j.aej.2016.06.016.   DOI
3 ACI Committee 318 (1999), Building Code Requirements for Structural Concrete and Commentary (ACI 318-99), Detroit (MI) American Concrete Institute.
4 Badakhshan, E. and Noorzad, A. (2015), "Load eccentricity effects on behavior of circular footings reinforced with geogrid sheets", J. Rock Mech. Geotech. Eng., 7(6), 691-699. https://doi.org/10.1016/j.jrmge.2015.08.006.   DOI
5 Baraghith, A.T., Mansour, W., Behiry, R.N. and Fayed, S. (2022), "Effectiveness of SHCC strips reinforced with glass fiber textile mesh layers for shear strengthening of RC beams: Experimental and numerical assessments", Construct. Build. Mater., 327, 127036. https://doi.org/10.1016/j.conbuildmat.2022.127036 .   DOI
6 Basha, A., Fayed, S. and Mansour, W. (2020), "Flexural strengthening of RC one way solid slab with strain hardening cementitious composites (SHCC)", Adv. Concrete Construct., 9, 511-527. http://dx.doi.org/10.12989/acc.2020.9.5.511.   DOI
7 Bashir, M.A., Furuuchi, H., Ueda, T. and Bashir, N. (2013), "Prediction of ultimate moment anchorage capacity of concrete filled steel box footing", Steel Compos. Struct., 15(6), 645-658. http://dx.doi.org/10.12989/scs.2013.15.6.645.   DOI
8 Bonic, Z., Davidovic, N., Vacev, T., Romic, N., Zlatanovic, E. and Savic, J. (2017), "Punching behaviour of reinforced concrete footings at testing and according to Eurocode 2 and fib Model Code 2010", Int. J. Concrete Struct. Mater., 11(4), 657-676. http://dx.doi.org/10.1007/s40069-017-0213-8.   DOI
9 Bonic, Z. and Folic, R. (2013), "Punching of column footings - comparison of experimental and calculation results", Gradevinar, 65, 887- 899. http://dx.doi.org/10.14256/JCE.916.2013.   DOI
10 Coduto DP (2001), Foundation Design: Principles and Practices, New Jersey: Prentice-Hall.
11 Davies, N.T., Altaner, C.M. and Apiolaza, L.A. (2016), "Elastic constants of green Pinus radiata wood", New Zealand J. Forestry Sci., 46, 1-6.
12 Fayed, S. and Mansour, W. (2020), "Evaluate the effect of steel, polypropylene and recycled plastic fibers on concrete properties", Adv. Concrete Construct., 10(4), 319-332. https://doi.org/10.12989/acc.2020.10.4.319.   DOI
13 ECP 203-17 (2017), Egyptian Code for Designing and Constructing Reinforced Concrete Structures, Housing and Building National Research Center, Cairo, Egypt.
14 Eurocode 2 (2008), Commentary European Concrete Platform, ASBL, Brussels.
15 Fayed, S., Badr el-din, A., Basha, A. and Mansour, W. (2022), "Shear behavior of RC pile cap beams strengthened using ultrahigh performance concrete reinforced with steel mesh fabric", Case Studies Construct. Mater., 17, e01532. https://doi.org/10.1016/j.cscm.2022.e01532.   DOI
16 Federation Internationale du Beton (fib) (2010), Shear and Punching Shear in RC and FRC Elements. fib Bulletin 57.
17 Ganganagoudar, A., Mondal, T.G. and Prakash, S.S. (2016), "Improved softened membrane model for reinforced concrete circular bridge columns under torsional loading", J. Bridge Eng., 21, 04016037. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000907.   DOI
18 Hallgren, M. and Bjerke, M. (2002), "Non-linear finite element analyses of punching shear failure of column footings", Cement Concrete Compos., 24(6), 491-496. https://doi.org/10.1016/s0958-9465(01)00065-8.   DOI
19 Hamoda, A., Emara, M. and Mansour, W. (2019), "Behavior of steel I-beam embedded in normal and steel fiber reinforced concrete incorporating demountable bolted connectors", Compos. Part B: Eng., 174, 106996. https://doi.org/10.1016/j.compositesb.2019.106996.   DOI
20 Hegger, J., Ricker, M., Ulke, B. and Ziegler, M. (2007), "Investigations on punching shear behaviour of reinforced concrete footings", Eng Struct., 29, 2233-2241. https://doi.org/10.1016/j.engstruct.2006.11.012.   DOI
21 Kueres, D., Siburg, C., Herbrand, M., Classen, M. and Hegger, J. (2017), "Uniform design method for punching shear in flat slabs and column bases", Eng. Struct., 136, 149-164. https://doi.org/10.1016/j.engstruct.2016.12.064.   DOI
22 Hegger, J., Sherif, A.G. and Ricker, M. (2006), "Experimental investigations on punching behavior of reinforced concrete footings", ACI Struct. J., 103(4), 604-613.
23 Hibbitt, K. and Sorensen, I. (2000), ABAQUS Theory Manual, User Manual and Example Manual.
24 Kueres, D., Schmidt, P. and Hegger, J. (2019), "Punching shear behavior of reinforced concrete footings with a varying amount of shear reinforcement", Struct. Concrete. 20, 552-563. https://doi.org/10.1002/suco.201800257.   DOI
25 Lee, S.S., Moon, J., Park, K.S. and Bae, K.W. (2014), "Strength of footing with punching shear preventers", Sci. World J., 474728, https://doi.org/10.1155/2014/474728.   DOI
26 Mahiyar, H., Patel, A.N. (2000), "Analysis of angle shaped footing under eccentric loading", J. Geotech. Geoenviron. Eng., 126,(12), 1151-1156. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:12(1151).   DOI
27 Mancilla, G.A., Rojas, A.L., Chavarria, S.L. and Elizondo, M.M. (2019), "Modeling for the strap combined footings Part I: Optimal dimensioning", Steel Compos. Struct., 30(2), 97-108. http://dx.doi.org/10.12989/scs.2019.30.2.097.   DOI
28 Mansour, W. and Fayed, S. (2021), "Effect of interfacial surface preparation technique on bond characteristics of both NSCUHPFRC and NSC-NSC composites", Structures, 29, 147-166. https://doi.org/10.1016/j.istruc.2020.11.010.   DOI
29 Mansour, W. and Tayeh, B. (2020), "Shear behaviour of RC beams strengthened by various ultrahigh performance fibre-reinforced concrete systems", Adv. Civil Eng., 1-18, 2139054. https://doi.org/10.1155/2020/2139054.   DOI
30 Mansour, W. (2021), "Numerical analysis of the shear behavior of FRP-strengthened continuous RC beams having web openings", Eng. Struct., 227, 111451. https://doi.org/10.1016/j.engstruct.2020.111451.   DOI
31 Mansour, W. and Fayed, S. (2021), "Flexural rigidity and ductility of RC beams reinforced with steel and recycled plastic fibers", Steel Compos. Struct., 41(3), 317-334. https://doi.org/10.12989/scs.2021.41.3.317.   DOI
32 Mansour, W., Sakr, M.A., Seleemah, A.A., Tayeh, B.A., Khalifa, T. M. (2022a), "Bond behavior between concrete and prefabricated Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC) plates", Struct. Eng. Mech., 81(3), 305-316. https://doi.org/10.12989/sem.2022.81.3.305.   DOI
33 Mansour, W., Tayeh, B.A. and Tam, L.H. (2022b), "Finite element analysis of shear performance of UHPFRC-encased steel composite beams: Parametric study", Eng. Struct., 271, 114940. https://doi.org/10.1016/j.engstruct.2022.114940.   DOI
34 Obaidat, Y.T., Heyden, S. and Dahlblom O. (2010), "The effect of CFRP and CFRP/concrete interface models when modelling retrofitted RC beams with FEM", Compos. Struct., 92, 1391-1398. https://doi.org/10.1016/j.compstruct.2009.11.008.   DOI
35 Oskouei, A.V., Kivi, M.P., Araghi, H. and Bazli, M. (2017), "Experimental study of the punching behavior of GFRP reinforced lightweight concrete footing", Mater. Struct., 50(6). https://doi.org/10.1617/s11527-017-1127-2.   DOI
36 Palafox, J., Rojas, A.L., Chavarria, S.L. and Elizondo, M.M. (2019), "Modeling for the strap combined footings Part II: Mathematical model for design", Steel Compos. Struct., 30(2), 109-121. http://dx.doi.org/10.12989/scs.2019.30.2.109.   DOI
37 Park, R. (1989), "Evaluation of ductility of structures and structural assemblages from laboratory testing", Bull. New Zealand Soc. Earthq. Eng., 22, 155-166. https://doi.org/10.5459/bnzsee.22.3.155-166 .   DOI
38 Sanez, L.P. (1964), "Discussion of equation for the stress - strain curve of concrete by desayi and Krishnan", ACI J., 61, 1229-1235.
39 Sagaseta, J., Olmati, P., Micallef, K. and Cormie, D. (2017), "Punching shear failure in blast-loaded RC slabs and panels", Eng. Struct., 147, 177-194. https://doi.org/10.1016/j.engstruct.2017.04.051.   DOI
40 Sakr, M.A., Sleemah, A.A., Khalifa, T.M., Mansour, W.N. (2018), "Behavior of RC beams strengthened in shear with ultra-high performance fiber reinforced concrete (UHPFRC)", In MATEC Web of Conferences, https://doi.org/10.1051/matecconf/201819909002 .   DOI
41 Siburgm, C. and Hegger, J. (2014), "Experimental investigations on the punching behaviour of reinforced concrete footings with structural dimensions", Struct. Concrete. 15(3), 331-339. https://doi.org/10.1002/suco.201300083.   DOI
42 Siburg, C., Ricker, M. and Hegger, J. (2014), "Punching shear design of footings: critical review of different code provisions", Struct. Concrete, 15(4), 497-508. https://doi.org/10.1002/suco.201300092.   DOI
43 Simoes, J.T., Bujnak, J., Ruiz, M.F. and Muttoni, A. (2016), "Punching shear tests on compact footings with uniform soil pressure", Struct. Concrete, 17(4), 603-617. https://doi.org/10.1002/suco.201500175.   DOI
44 Simoes, J.T., Faria, D.M.V., Ruiz, M.F. and Muttoni, A. (2016), "Strength of reinforced concrete footings without transverse reinforcement according to limit analysis", Eng. Struct., 112, 146-161. https://doi.org/10.1016/j.engstruct.2016.01.010.   DOI
45 Sucharda, O., Smirakova, M., Vaskova, J., Mateckova, P., Kubosek, J. and Cajka, R. (2018), "Punching shear failure of concrete ground supported slab", Int. J. Concrete Struct. Mater., 12(1). https://doi.org/10.1186/s40069-018-0263-6.   DOI
46 Xue, H., Gilbert, B.P., Guan, H., Lu, X., Li, Y., Ma, F. and Tian, Y. (2018), "Load transfer and collapse resistance of RC flat plates under interior column removal scenario", 04018087. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002090.   DOI
47 Truong, G.T., Choi, K.K. and Kim, H.S. (2017), "Punching-shear behaviors of RC-column footings with various reinforcement and strengthening details", Eng. Struct., 151, 282-296. https://doi.org/10.1016/j.engstruct.2017.08.037.   DOI
48 Vacev, T., Bonic, Z., Prolovic, V., Davidovic, N. and Lukic, D. (2015), "Testing and finite element analysis of reinforced concrete column footings failing by punching shear", Eng. Struct., 92, 1-14. https://doi.org/10.1016/j.engstruct.2015.02.027.   DOI
49 Wieneke, K., Kueres, D., Siburg, C. and Hegger, J. (2016), "Investigations on the punching shear behaviour of eccentrically loaded footings", Struct. Concrete, 17(6), 1047-1058. https://doi.org/10.1002/suco.201500127.   DOI
50 Zhang, W.X., Wu, H., Hwang, H.J., Zhang, J.Y., Chen, B. and Yi, W.J. (2019), "Bearing behavior of reinforced concrete column-isolated footing substructures", Eng. Struct., 200. 109744. https://doi.org/10.1016/j.engstruct.2019.109744.   DOI
51 Zhang, Y.B. (2016), "Analysis and applied research on Pushover of RC frame structure based on single foundation", Changsha: Master dissertation of Hunan University.
52 Zhou, H.Z., Zheng, G., He, X.P., Xu, X.M., Zhang, T.Q., Yang, X.Y. (2018), "Bearing capacity of strip footings on c-phi soils with square voids", Acta Geotech., 13(03), 747-755. https://doi.org/10.1007/s11440-018-0630-0.   DOI