• Title/Summary/Keyword: ABAQUS program

Search Result 337, Processing Time 0.022 seconds

Computation of stress-deformation of deep beam with openings using finite element method

  • Senthil, K.;Gupta, A.;Singh, S.P.
    • Advances in concrete construction
    • /
    • v.6 no.3
    • /
    • pp.245-268
    • /
    • 2018
  • The numerical investigations have been carried out on deep beam with opening subjected to static monotonic loading to demonstrate the accuracy and effectiveness of the finite element based numerical models. The simulations were carried out through finite element program ABAQUS/CAE and the results thus obtained were validated with the experiments available in literature. Six simply supported beams were modelled with two square openings of 200 and 250 mm sides considered as opening at centre, top and bottom of the beam. In order to define the material behaviour of concrete and reinforcing steel bar the Concrete Damaged Plasticity model and Johnson-Cook material parameters available in literature were employed. The numerical results were compared with the experiments in terms of ultimate failure load, displacement and von-Mises stresses. In addition to that, seventeen beams were simulated under static loading for studying the effect of opening location, size and shape of the opening and depth, span and shear span to depth ratio of the deep beam. In general, the numerical results accurately predicted the pattern of deformation and displacement and found in good agreement with the experiments. It was concluded that the structural response of deep beam was primarily dependent on the degree of interruption of the natural load path. An increase in opening size from 200 to 250 mm size resulted in an average shear strength reduction of 35%. The deep beams having circular openings undergo lesser deflection and thus they are preferable than square openings. An increase in depth from 500 mm to 550 mm resulted in 78% reduced deflection.

FEA of Beam-Column Connection with Bolted Web (웨브를 볼트로 접합한 보-기둥 접합부의 유한요소해석)

  • Shin, Kyung-Jae;Lim, Bo-Hyuk;Lee, Swoo-Heon;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.305-316
    • /
    • 2011
  • As the building structures are higher and bigger, the high-performance steels of high strength, toughness, and low yield ratio had been required and developed. In this paper the behavior of the moment connection with bolted web and high strength steel was studied by using the finite-element analysis computer program of ABAQUS. The analysis model is based on the test results and the same cyclic load history was applied at the FE(Finite Element) model until it failed in the test. Through the FEA, several indicators hardly measured from the test were acquired. These indicators related to stress and strain were selected from three plastic rotation stages: 0.003 rad, 0.03 rad, and final failure rotation. Specifically, at the final failure stage, the strain indicators producing the full plastic behavior were suggested as a mechanical property for steel.

Parametric Study on Design Variables of Concrete Beam Reinforced with GFRP Rebar using Finite Element Analysis (유한요소해석에 의한 GFRP 보강 콘크리트 보의 설계인자 분석)

  • Moon, Do-Young;Oh, Hong-Seob;Ahn, Kwang-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.357-367
    • /
    • 2008
  • Parametric study of beams with reinforced with FRP rebar is conducted in this study. Using ABAQUS program, the finite element analysis model is set and calibrated with the experimental results which have been conducted by the authors. The employed design parameters are reinforcement ratio, elastic modulus of rebar, and concrete strength. The obtained results from FE analysis are investigated in terms of normalized beam stiffness. In particular, the effect of reinforcement ratio on the flexural stiffness is investigated with comparing with the model code specified on ACI 440. From the analysis results, the reinforcement ratio in beam is the first parameter affecting on the beam stiffness. In addition, its effect could be increased with higher concrete strength.

Finite Element Analysis of Carbon Steel according to Shape and Distribution of Phase (탄소강 조직의 형상 및 분포에 따른 유한요소해석)

  • Seo, Dae-Cheol;Lee, Duck-Hee;Lee, Jung-Ju;Nam, Soo-Woo;Choo, Wung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.780-790
    • /
    • 1997
  • In this study, the stress-strain relations of steels have been calculated as a function of microstructural morphologies of each phase by use of FEM program(i.e. ABAQUS). The mechanical behavior of low carbon steels is affected by the microstructural factors such as yield ratio, volume fraction, shape and distribution of each phase and so on. The effects of shape, volume fraction and yield ratio of each phase on the mechanical behavior were analyzed by using unit cell and whole specimen size models. Results obtained are summarized as follows. As the yield ratio of hard phase to that of soft phase and volume fraction of hard phase were increased, stress level of flow curves were increased. It was found that in whole specimen size model, as the particle size was decreased, higher stress level was shown. Lastly the relationship between microstructure and tensile properties was examined by using the steels with various microstructural morphologies.

Seismic vulnerbility analysis of Bankstown's West Terrace railway bridge

  • Mirza, Olivia;Kaewunruen, Sakdirat;Galia, Darren
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.569-585
    • /
    • 2016
  • This paper highlights a case study that investigates the behaviour of existing bridge, West Terrace Bridge, induced by horizontal seismic loading. Unfortunately the lack of past information related to seismic activity within the NSW region has made it difficult to understand better the capacity of the structure if Earthquake occurs. The research was conducted through the University of Western Sydney in conjunction with Railcorp Australia, as part of disaster reduction preparedness program. The focus of seismic analyses was on the assessment of stress behaviour, induced by cyclic horizontal/vertical displacements, within the concrete slab and steel truss of the bridge under various Earthquake Year Return Intervals (YRI) of 1-100, 1-200, 1-250, 1-500, 1-800, 1-1000, 1-1500, 1-2000 and 1-2500. Furthermore the stresses and displacements were rigorously analysed through a parametric study conducted using different boundary conditions. The numerical analysis of the concrete slab and steel truss were performed through the finite element software, ABAQUS. The field measurements and observation had been used to validate the results drawn from the finite element simulation. It was illustrated that under a YRI of 1/1000 the bottom chord of the steel truss failed as the stress induced surpassed the ultimate stress capacity and the horizontal displacement exceeded the allowable displacement measured in the field observations whereas the vertical displacement remained within the previously observed limitations. Furthermore the parametric studies in this paper demonstrate that a change in boundary conditions alleviated the stress distribution throughout the structure allowing it to withstand a greater load induced by the earthquake YRI but ultimately failed when the maximum earthquake loading was applied. Therefore it was recommended to provide a gap of 50mm on the end of the concrete slab to allow the structure to displace without increasing the stress in the structure. Finally, this study has proposed a design chart to showcase the failure mode of the bridge when subjected to seismic loading.

Nonlinear Analysis of Prestressed Concrete Containment Structures Considering Slip Behavior of Tendons (긴장재의 슬립거동을 고려한 원자로 격납건물의 비선형 해석)

  • Kwak Hyo-Gyoung;Kim Jae-Hong;Kim Sun-Hoon;Chung Yun-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.335-345
    • /
    • 2005
  • This paper concentrates on the nonlinear analysis of prestressed concrete (PSC) containment structures. Unlike a commercialized program which adopts the perfect bond assumption between concrete and tendon in the analysis of PSC structures, a numerical algorithm to consider the slip effect, simultaneously with the use of commercialized programs such as DIANA and ABAQUS, is introduced in this paper For bonded tendons, the apparent yield stress of an embedded tendon is determined from the bond slip relationship. And for unbonded tendons, Correction for the strength and stiffness of unbonded internal tendons is achieved on the basis of an iteration scheme derived from the slip behavior of tendon along the entire length. Finally, the developed algorithm is applied to two PSC containment structures of PWR and CANDU to verify its efficiency and applicability in simulating the structural behavior of large complex structures, and the obtained result shows that both containment structures represent the ultimate pressure capacity larger than about 3 times of the design pressure.

Study of an innovative two-stage control system: Chevron knee bracing & shear panel in series connection

  • Vosooq, Amir Koorosh;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.881-898
    • /
    • 2013
  • This paper describes analytical investigation into a new dual function system including a couple of shear links which are connected in series using chevron bracing capable to correlate its performance with magnitude of earthquakes. In this proposed system, called Chevron Knee-Vertical Link Beam braced system (CK-VLB), the inherent hysteretic damping of vertical link beam placed above chevron bracing is exclusively utilized to dissipate the energy of moderate earthquakes through web plastic shear distortion while the rest of the structural elements are in elastic range. Under strong earthquakes, plastic deformation of VLB will be halted via restraining it by Stopper Device (SD) and further imposed displacement subsequently causes yielding of the knee elements located at the bottom of chevron bracing to significantly increase the energy dissipation capacity level. In this paper first by studying the knee yielding mode, a suitable shape and angle for diagonal-knee bracing is proposed. Then finite elements models are developed. Monotonic and cyclic analyses have been conducted to compare dissipation capacities on three individual models of passive systems (CK-VLB, knee braced system and SPS system) by General-purpose finite element program ABAQUS in which a bilinear kinematic hardening model is incorporated to trace the material nonlinearity. Also quasi-static cyclic loading based on the guidelines presented in ATC-24 has been imposed to different models of CK-VLB with changing of vertical link beam section in order to find prime effectiveness on structural frames. Results show that CK-VLB system exhibits stable behavior and is capable of dissipating a significant amount of energy in two separate levels of lateral forces due to different probable earthquakes.

Confinement models for high strength short square and rectangular concrete-filled steel tubular columns

  • Aslani, Farhad;Uy, Brian;Wang, Ziwen;Patel, Vipul
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.937-974
    • /
    • 2016
  • While extensive efforts have been made in the past to develop finite element models (FEMs) for concrete-filled steel tubular columns (CFSTCs), these models may not be suitable to be used in some cases, especially in view of the utilisation of high strength steel and high strength concrete. A method is presented herein to predict the complete stress-strain curve of concrete subjected to tri-axial compressive stresses caused by axial load coupled with lateral pressure due to the confinement action in square and rectangular CFSTCs with normal and high strength materials. To evaluate the lateral pressure exerted on the concrete in square and rectangular shaped columns, an accurately developed FEM which incorporates the effects of initial local imperfections and residual stresses using the commercial program ABAQUS is adopted. Subsequently, an extensive parametric study is conducted herein to propose an empirical equation for the maximum average lateral pressure, which depends on the material and geometric properties of the columns. The analysis parameters include the concrete compressive strength ($f^{\prime}_c=20-110N/mm^2$), steel yield strength ($f_y=220-850N/mm^2$), width-to-thickness (B/t) ratios in the range of 15-52, as well as the length-to-width (L/B) ratios in the range of 2-4. The predictions of the behaviour, ultimate axial strengths, and failure modes are compared with the available experimental results to verify the accuracy of the models developed. Furthermore, a design model is proposed for short square and rectangular CFSTCs. Additionally, comparisons with the prediction of axial load capacity by using the proposed design model, Australian Standard and Eurocode 4 code provisions for box composite columns are carried out.

Cyclic response and design procedure of a weak-axis cover-plate moment connection

  • Lu, Linfeng;Xu, Yinglu;Zheng, Huixiao;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.329-345
    • /
    • 2018
  • This paper systematically investigated the mechanical performance of the weak-axis cover-plate connection, including a beam end monotonic loading test and a column top cyclic loading test, and a series of parametric studies for exterior and interior joints under cyclic loading using a nonlinear finite element analysis program ABAQUS, focusing on the influences of the shape of top cover-plate, the length and thickness of the cover-plate, the thickness of the skin plate, and the steel material grade. Results showed that the strains at both edges of the beam flange were greater than the middle's, thus it is necessary to take some technical methods to ensure the construction quality of the beam flange groove weld. The plastic rotation of the exterior joint can satisfy the requirement of FEMA-267 (1995) of 0.03 rad, while only one side connection of interior joint satisfied ANSI/AISC 341-10 under the column top cyclic loading. Changing the shape or the thickness or the length of the cover-plate did not significantly affect the mechanical behaviors of frame joints no matter in exterior joints or interior joints. The length and thickness of the cover-plate recommended by FEMA 267 (1995) is also suitable to the weak-axis cover-plate joint. The minimum skin plate thickness and a design procedure for the weak-axis cover-plate connections were proposed finally.

Dynamic Characteristics and Power Generation Performance Evaluation of Customized Energy Block Structures (시설물 맞춤형 에너지 블록 구조의 동적 특성 및 발전 성능 평가)

  • Noh, Myung-Hyun;Kim, Hyo-Jin;Parl, Ji-Young;Lee, Sang-Youl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.197-206
    • /
    • 2016
  • This study carried out structural behaviors and power generation performances of customized energy harvesting block structures, especially for infrastructures such as parking facility. The improved energy block structures described in this study were represented by using numerical and experimental models. In particular, the composite-PZT hybrid energy blocks are tentatively proposed for better structural durability and power generation effects. The finite element model using ABAQUS program is used for studying static and dynamic characteristics of block structures made of composite materials. In addition, we evaluated the various power generation capacities of advanced energy block structures through laboratory-scale and field experiments.