• Title/Summary/Keyword: ABAQUS model

Search Result 629, Processing Time 0.028 seconds

Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures

  • Choi, Joonho;Kim, Heesun;Haj-ali, Rami
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.129-149
    • /
    • 2010
  • The objective of this study is to formulate a general 3D material-structural analysis framework for the thermomechanical behavior of steel-concrete structures in a fire environment. The proposed analysis framework consists of three sequential modeling parts: fire dynamics simulation, heat transfer analysis, and a thermomechanical stress analysis of the structure. The first modeling part consists of applying the NIST (National Institute of Standards and Technology) Fire Dynamics Simulator (FDS) where coupled CFD (Computational Fluid Dynamics) with thermodynamics are combined to realistically model the fire progression within the steel-concrete structure. The goal is to generate the spatial-temporal (ST) solution variables (temperature, heat flux) on the surfaces of the structure. The FDS-ST solutions are generated in a discrete form. Continuous FDS-ST approximations are then developed to represent the temperature or heat-flux at any given time or point within the structure. An extensive numerical study is carried out to examine the best ST approximation functions that strike a balance between accuracy and simplicity. The second modeling part consists of a finite-element (FE) transient heat analysis of the structure using the continuous FDS-ST surface variables as prescribed thermal boundary conditions. The third modeling part is a thermomechanical FE structural analysis using both nonlinear material and geometry. The temperature history from the second modeling part is used at all nodal points. The ABAQUS (2003) FE code is used with external user subroutines for the second and third simulation parts in order to describe the specific heat temperature nonlinear dependency that drastically affects the transient thermal solution especially for concrete materials. User subroutines are also developed to apply the continuous FDS-ST surface nodal boundary conditions in the transient heat FE analysis. The proposed modeling framework is applied to predict the temperature and deflection of the well-documented third Cardington fire test.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.

Temperature distribution of ceramic panels of a V94.2 gas turbine combustor under realistic operation conditions

  • Namayandeh, Mohammad Javad;Mohammadimehr, Mehdi;Mehrabi, Mojtaba
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.117-135
    • /
    • 2019
  • The lifetime of a gas turbine combustor is typically limited by the durability of its liner, the structure that encloses the high-temperature combustion products. The primary objective of the combustor thermal design process is to ensure that the liner temperatures do not exceed a maximum value set by material limits. Liner temperatures exceeding these limits hasten the onset of cracking which increase the frequency of unscheduled engine removals and cause the maintenance and repair costs of the engine to increase. Hot gas temperature prediction can be considered a preliminary step for combustor liner temperature prediction which can make a suitable view of combustion chamber conditions. In this study, the temperature distribution of ceramic panels for a V94.2 gas turbine combustor subjected to realistic operation conditions is presented using three-dimensional finite difference method. A simplified model of alumina ceramic is used to obtain the temperature distribution. The external thermal loads consist of convection and radiation heat transfers are considered that these loads are applied to flat segmented panel on hot side and forced convection cooling on the other side. First the temperatures of hot and cold sides of ceramic are calculated. Then, the thermal boundary conditions of all other ceramic sides are estimated by the field observations. Finally, the temperature distributions of ceramic panels for a V94.2 gas turbine combustor are computed by MATLAB software. The results show that the gas emissivity for diffusion mode is more than premix therefore the radiation heat flux and temperature will be more. The results of this work are validated by ANSYS and ABAQUS softwares. It is showed that there is a good agreement between all results.

Strain Transmission Ratio of a Distributed Optical Fiber Sensor with a Coating Layer (코팅된 분포형 광섬유 센서의 변형률 전달률)

  • Yoon, S.Y.;Kown, I.B.;Yu, H.S.;Kim, E.
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.429-434
    • /
    • 2018
  • We investigate strain transmissions of a surface bonded distributed optical fiber sensor considering strain variation according to positions. We first derive a strain transmission ratio depending on a wavelength of a strain distribution of the host structure from an analysis model. The strain transmission ratio is compared with numerical results obtained from the finite element method using ABAQUS. We find that the analytical results agree well with the numerical results. The strain transmission ratio is a function of a wavelength, i.e. the strain transmission ratio decreases (increases) as the wavelength of the host strain decreases (increases). Therefore, if an arbitrary strain distribution containing various wavelengths is given to a host structure, a distorted strain distribution will be observed in the distributed optical fiber sensor compare to that of the host structure, because each wavelength shows different strain transmission ratio. The strain transmission ratio derived in this study will be useful for accurately identifying the host strain distribution based on the signal of a distributed optical fiber sensor.

Feasibility Study of Submerged Floating Tunnels Moored by an Inclined Tendon System

  • Won, Deokhee;Kim, Seungjun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1191-1199
    • /
    • 2018
  • Concepts of submerged floating tunnels (SFTs) for land connection have been continuously suggested and developed by several researchers and institutes. To maintain their predefined positions under various dynamic environmental loading conditions, the submerged floating tunnels should be effectively moored by reasonable mooring systems. With rational mooring systems, the design of SFTs should be confirmed to satisfy the structural safety, fatigue, and operability design criteria related to tunnel motion, internal forces, structural stresses, and the fatigue life of the main structural members. This paper presents a feasibility study of a submerged floating tunnel moored by an inclined tendon system. The basic structural concept was developed based on the concept of conventional cable-stayed bridges to minimize the seabed excavation, penetration, and anchoring work by applying tower-inclined tendon systems instead of conventional tendons with individual seabed anchors. To evaluate the structural performance of the new type of SFT, a hydrodynamic analysis was performed in the time domain using the commercial nonlinear finite element code ABAQUS-AQUA. For the main dynamic environmental loading condition, an irregular wave load was examined. A JONSWAP wave spectrum was used to generate a time-series wave-induced hydrodynamic load considering the specific significant wave height and peak period for predetermined wave conditions. By performing a time-domain hydrodynamic analysis on the submerged floating structure under irregular waves, the motional characteristics, structural stresses, and fatigue damage of the floating tunnel and mooring members were analyzed to evaluate the structural safety and fatigue performance. According to the analytical study, the suggested conceptual model for SFTs shows very good hydrodynamic structural performance. It can be concluded that the concept can be considered as a reasonable structural type of SFT.

Numerical analysis of simply supported one-way reinforced concrete slabs under fire condition

  • Ding, Fa-xing;Wang, Wenjun;Jiang, Binhui;Wang, Liping;Liu, Xuemei
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.355-367
    • /
    • 2021
  • This paper investigates the mechanical response of simply supported one-way reinforced concrete slabs under fire through numerical analysis. The numerical model is constructed using the software ABAQUS, and verified by experimental results. Generally, mechanical response of the slab can be divided into four stages, accompanied with drastic stress redistribution. In the first stage, the bottom of the slab is under tension and the top is under compression. In the second stage, stress at bottom of the slab becomes compression due to thermal expansion, with the tension zone at the mid-span section moving up along the thickness of the slab. In the third stage, compression stress at bottom of the slab starts to decrease with the deflection of the slab increasing significantly. In the fourth stage, the bottom of the slab is under tension again, eventually leading to cracking of the slab. Parametric studies were further performed to investigate the effects of load ratio, thickness of protective layer, width-span ratio and slab thickness on the performance of the slab. Results show that increasing the thickness of the slab or reducing the load ratio can significantly postpone the time that deflection of the slab reaches span/20 under fire. It is also worth noting that slabs with the span ratio of 1:1 reached a deflection of span/20 22 min less than those of 1:3. The thickness of protective layer has little effect on performance of the slab until it reaches a deflection of span/20, but its effect becomes obvious in the late stages of fire.

Study on the Applicability of Standard Design Response Spectrum Analysis Method for Pile-type Mooring Facilities (말뚝식 계류시설의 표준설계응답스펙트럼 해석법 적용성 연구)

  • Oh, Jeong-Keun;Jeong, Yeong-Seok;Kwon, Min-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.27-36
    • /
    • 2020
  • The purpose of this paper is to study on the applicability of the standard design response spectrum from the response spectrum analysis method, mainly applied to pile mooring facilities. To this end, after performing the ProShake 1-dimensional site response considering various geological conditions, the current standard design response spectrum was compared, and the ground-pile model in time history and two-dimensional site response analysis using Abaqus were performed to analyze the dynamic behavior of the ground-pile and to examine the selection method of the reference surface of the response spectrum on the installed slope, respectively. As a result, it was confirmed that no problems were found in the applicability of the current standard design response spectrum and no improvements are needed as well when considering the characteristics of the ground-pile dynamic behavior and the slope of the pile mooring facility.

Axial behavior of steel reinforced lightweight aggregate concrete columns: Analytical studies

  • Mostafa, Mostafa M.A.;Wu, Tao;Fu, Bo
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.223-239
    • /
    • 2021
  • This paper presents the analytical modeling and finite element (FE) analysis, using ABAQUS software, of the new types of steel reinforced lightweight aggregate concrete (SRLAC) columns with cross-shaped (+shaped and X-shaped) steel section, using proposed three analytical and two FE models in total. The stress-strain material models for different components in the columns, including the confined zones of the lightweight aggregate concrete (LWAC) using three and four concrete zones divisions approaches and with and without taking into account the stirrups reaction effect, are established first. The analytical models for determining the axial load-deformation behavior of the SRLAC columns are drawn based on the materials models. The analytical and FE models' results are compared with previously reported test results of the axially loaded SRLAC columns. The proposed analytical and FE models accurately predict the axial behavior and capacities of the new types of SRLAC columns with acceptable agreements for the load-displacement curves. The LWAC strength, steel section ratio, and steel section configuration affect the contact stress between the concrete and steel sections. The average ratios of the ultimate test load to the three analytical models and FEA model loads, Put /Pa1, Put /Pa2, Put /Pa3, and Put /PFE1, for the tested specimens are 0.96, 1.004, 1.016, and 1.019, respectively. Finally, the analytical parametric studies are also studied, in terms of the effects of confinement, LWAC strength, steel section ratio, and the reinforcement ratio on the axial capacity of the SRLAC column. When concrete strength, confinements, area of steel sections, or reinforcement bars ratio increased, the axial capacities increased.

Seismic analysis of high-rise steel frame building considering irregularities in plan and elevation

  • Mohammadzadeh, Behzad;Kang, Junsuk
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.65-80
    • /
    • 2021
  • Irregularities of a building in plan and elevation, which results in the change in stiffness on different floors highly affect the seismic performance and resistance of a structure. This study motivated to investigate the seismic responses of high-rise steel-frame buildings of twelve stories with various stiffness irregularities. The building has five spans of 3200 mm distance in both X- and Z-directions in the plan. The design package SAP2000 was adopted for the design of beams and columns and resulted in the profile IPE500 for the beams of all floors and box sections for columns. The column cross-section dimensions vary concerning the number of the story; one to three: 0.50×0.50×0.05m, four to seven: 0.45×0.45×0.05 m, and eight to twelve: 0.40×0.40×0.05 m. Real recorded ground accelerations obtained from the Vrancea earthquake in Romania together with dead and live loads corresponding to each story were considered for the applied load. The model was validated by comparing the results of the current method and literature considering a three-bay steel moment-resisting frame of eight-story height subject to seismic load. To investigate the seismic performance of the buildings, the time-history analysis was performed using ABAQUS. Deformed shapes corresponding to negative and positive peaks were provided followed by the story drifts and fragility curves which were used to examine the probability of collapse of the building. From the results, it was concluded that regular buildings provided a seismic performance much better than irregular buildings. Furthermore, it was observed that building with torsional irregularity was more vulnerable to seismic failure.

Research on the anti-seismic performance of composite precast utility tunnels based on the shaking table test and simulation analysis

  • Yang, Yanmin;Li, Zigen;Li, Yongqing;Xu, Ran;Wang, Yunke
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.163-173
    • /
    • 2021
  • In this paper, the parameters of haunch height, reinforcement ratio and site condition were evaluated for the influence on the seismic performance of a composite precast fabricated utility tunnel by shaking table test and numerical simulation. The dynamic response laws of acceleration, interlayer displacement and steel strain under unidirectional horizontal seismic excitation were analyzed through four specimens with a similarity ratio of 1:6 in the test. And a numerical model was established and analyzed by the finite element software ABAQUS based on the structure of utility tunnel. The results indicated that composite precast fabricated utility tunnel with the good anti-seismic performance. In a certain range, increasing the height of haunch or the ratio of reinforcement could reduce the influence of seismic wave on the utility tunnel structure, which was beneficial to the structure earthquake resistance. The clay field containing the interlayer of liquefied sandy soil has a certain damping effect on the structure of the utility tunnel, and the displacement response could be reduced by 14.1%. Under the excitation of strong earthquake, the reinforcement strain at the side wall upper end and haunches of the utility tunnel was the biggest, which is the key part of the structure. The experimental results were in good agreement with the fitting results, and the results could provide a reference value for the anti-seismic design and application of composite precast fabricated utility tunnel.