• 제목/요약/키워드: ABAQUS model

검색결과 629건 처리시간 0.024초

Weibull distribution based constitutive model for nonlinear analysis of RC beams

  • Murthy, A. Ramachandra;Priya, D. Shanmuga
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.463-473
    • /
    • 2017
  • Reinforced concrete is a complex material to be modeled in finite element domain. A proper material model is necessary to represent the nonlinear behaviour accurately. Though the nonlinear analysis of RC structures evolved long back, still an accurate and reliable model to predict the realistic behaviour of components are limited. It is observed from literature that there are three well-known models to represent the nonlinear behaviour of concrete. These models include Chu model (1985), Hsu model (1994) and Saenz model (1964).A new stress-strain model based on Weibull distribution has been proposed in the present study. The objective of the present study is to analyze a reinforced concrete beam under flexural loading by employing all the models. Nonlinear behaviour of concrete is considered in terms of stress vs. strain, damage parameter, tension stiffening behaviour etc. The ductility of the RC beams is computed by using deflection based and energy based concepts. Both deflection ductility and energy based ductility is compared and energy based concept is found to be in good correlation with the experiments conducted. The behavior of RC beam predicted using ABAQUS has been compared with the corresponding experimental observations. Comparison between numerical and experimental results confirms that these four constitutive models are reliable in predicting the behaviour of RC structures and any of the models can be employed for analysis.

Behavior of circular thin-walled steel tube confined concrete stub columns

  • Ding, Fa-xing;Tan, Liu;Liu, Xue-mei;Wang, Liping
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.229-238
    • /
    • 2017
  • This paper presents a combined numerical and theoretical study on the composite action between steel and concrete of circular steel tube confined concrete (STCC) stub columns under axial compressive loading with a full theoretical elasto-plastic model and finite element (FE) model in comparison with experimental results. Based on continuum mechanics, the elasto-plastic model for STCC stub columns was established and the analysis was realized by a FORTRAN program and the three dimensional FE model was developed using ABAQUS. The steel ratio of the circular STCC columns were defined in range of 0.5% to 2% to analyze the composite action between steel tube and concrete, and make a further study on the advantages of the circular STCC columns. By comparing the results using the elasto-plastic methods with the parametric analysis result of FE model, the appropriate friction coefficient between the steel tube and core concrete was defined as 0.4 to 0.6. Based on ultimate balance theory, the formula of ultimate load capacity applying to the circular STCC stub columns was developed.

FE modeling of Partially Steel-Jacketed (PSJ) RC columns using CDP model

  • Ferrotto, Marco F.;Cavaleri, Liborio;Trapani, Fabio Di
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.143-152
    • /
    • 2018
  • This paper deepens the finite element modeling (FEM) method to reproduce the compressive behavior of partially steel-jacketed (PSJ) RC columns by means of the Concrete Damaged Plasticity (CDP) Model available in ABAQUS software. Although the efficiency of the CDP model is widely proven for reinforced concrete columns at low confining pressure, when the confinement level becomes high the standard plasticity parameters may not be suitable to obtain reliable results. This paper deals with these limitations and presents an analytically based strategy to fix the parameters of the Concrete Damaged Plasticity (CDP) model. Focusing on a realistic prediction of load-bearing capacity of PSJ RC columns subjected to monotonic compressive loads, a new strain hardening/softening function is developed for confined concrete coupled with the evaluation of the dilation angle including effects of confinement. Moreover, a simplified efficient modeling approach is proposed to take into account also the response of the steel angle in compression. The prediction accuracy from the current model is compared with that of existing experimental data obtained from a wide range of mechanical confinement ratio.

Optimal failure criteria to improve Lubliner's model for concrete under triaxial compression

  • Lei, Bo;Qi, Taiyue;Wang, Rui;Liang, Xiao
    • Computers and Concrete
    • /
    • 제28권6호
    • /
    • pp.585-603
    • /
    • 2021
  • The validation based on the experimental data demonstrates that the concrete strength under triaxial compression (TC) is overestimated by Lubliner-Oller strength criterion (SC) but underestimated by Lubliner-Lee SC in ABAQUS. Moreover, the discontinuous derivatives of failure criterion exists near the unexpected breakpoints. Both resulted from the piecewise linear meridians of the original Lubliner SC with constants γ. Following the screen for the available failure criteria to determine the model parameter γ of Lubliner SC, Menétrey-Willam SC (MWSC) is considered the most promising option with a reasonable aspect ratio Kc but no other strength values required and only two new model parameters introduced. The failure surface of the new Lubliner SC based on MWSC (Lubliner-MWSC) is smooth and has no breakpoints along the hydrostatic pressure (HP) axis. Finally, predicted results of Lubliner-MWSC are compared with other concrete failure criteria and experimental data. It turns out that the Lubliner-MWSC can represent the concrete failure behavior, and MWSC is the optimal choice to improve the applicability of the concrete damaged plasticity model (CDPM) under TC in ABAQUS.

철근콘크리트 벽체의 휨거동에 관한 비선형 유한요소해석 (A Nonlinear Finite Element Analysis to Study the Flexural Behavior of Reinforced Concrete Walls)

  • 한민기;박완신;한병찬;황선경;최창식;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.520-523
    • /
    • 2004
  • The finite element method(FEM) models were developed for the reinforced concrete flexural walls and analysed under constant axial and monotonic lateral load using ABAQUS. The major objective of the present study is to determine if the ABAQUS finite element program can be used to accurately model the post-cracked mode of failure in plastic regions of walls, and, if so, to develop practical failure criteria in the plastic range of the material response. The research comprises constitutive models to represent behavior of the materials that compose a wall on the basis of experimental data, development of techniques that are appropriate for analysis of reinforced concrete structures, verification, and calibration of the global model for reinforced concrete walls of increasing complexity. Results from the analyses of these FEM models offers significant insight into the flexural behavior of benchmark data.

  • PDF

형상기억합금 스트립 작동기를 이용한 구조물의 형상 변형 해석 (Deformation Analysis of the Structures with SMA Strip Actuator)

  • 노진호;한재홍;이인
    • 한국항공우주학회지
    • /
    • 제33권11호
    • /
    • pp.1-6
    • /
    • 2005
  • 본 연구에서는 형상기억합금 작동기의 열-기계적 특성과 구조물의 응용을 살펴보았다. Lagoudas 모델을 기본으로 3-D 형상기억합금의 구성방정식을 FORTRAN으로 해석 알고리즘을 만들어 user material(UMAT) subroutine을 개발하였다. 개발된 형상기억합금 해석 UMAT subroutine을 상용 프로그램 ABAQUS와 연계 해석하여 형상기억합금 작동기와 주 구조물간의 상호 특성을 수치적으로 살펴보았다.

Finite element modeling of the influence of FRP techniques on the seismic behavior of historical arch stone bridge

  • Mahdikhani, Mahdi;Naderi, Melika;Zekavati, Mehdi
    • Computers and Concrete
    • /
    • 제18권1호
    • /
    • pp.99-112
    • /
    • 2016
  • Since the preservation of monuments is very important to human societies, different methods are required to preserve historic structures. In this paper, 3D model of arch stone bridge at Pont Saint Martin, Aosta, Italy, was simulated by 1660 integrated separate stones using ABAQUS$^{(R)}$ software to investigate the seismic susceptibility of the bridge. The main objective of this research was to study a method of preservation of the historical stone bridge against possible earthquakes using FRP techniques. The nonlinear behavior model of materials used theory of plasticity based on Drucker-Prager yield criterion. Then, contact behavior between the block and mortar was modeled. Also, Seismosignal software was used to collect data related to 1976 Friuli Earthquake Italy, which constitutes a real seismic loading. The results show that, retrofitting of the arch stone bridge using FRP techniques decreased displacement of stones of spandrel walls, which prevents the collapse of stones.

소성 이론을 이용한 콘크리트 공시체의 거동 해석 (Analysis of Concrete Specimen Using Plasticity Theory)

  • 박재균;정철헌;강운석;현창헌
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.89-97
    • /
    • 2006
  • Recently, experimental and theoretical studies about nonlinear behavior of large concrete structures are in progress. The purpose of this study is to describe the nonlinear behavior of a concrete specimen under compression using several plastic models and to choose the best plastic model for later use in numerical analyses of concrete structures. ABAQUS is a general-purpose FEM program and we tested all suitable embedded material models for concrete. To verify the effectiveness of nonlinear analyses, results were compared with uniaxial and triaxial compression test results.

Honeycomb 스포크로 된 비공기압 타이어의 고유진동수 해석 (Natural Frequency Analysis of a NPT with Honeycomb Spokes)

  • 조홍준;이치훈;김기홍;김감찬;김두만
    • 항공우주시스템공학회지
    • /
    • 제5권2호
    • /
    • pp.33-39
    • /
    • 2011
  • The vibration characteristic of tires is one of very important issues which heavily affect the noise and comfort on driving. Therefore, when the new tire is designed, the vibration characteristic of tire should be considered. In this paper, the vibration characteristic of non-pneumatic tire is investigated for geometric of NPT which is designed by cell angle of spoke. The analysis is based on the finite element method and used ABAQUS program, which is able to non-linear analysis. The material of NPT is used for the Ogden energy model, which is model of hyperelastic material. This paper investigate natural frequency and modal of NPT and compare result of NPT with it of pneumatic tire.

Fracture properties of concrete using damaged plasticity model -A parametric study

  • Kalyana Rama, J.S.;Chauhan, D.R.;Sivakumar, M.V.N;Vasan, A.;Murthy, A. Ramachandra
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.59-69
    • /
    • 2017
  • The field of fracture mechanics has gained significance because of its ability to address the behaviour of cracks. Predicting the fracture properties of concrete based on experimental investigations is a challenge considering the quasi-brittle nature of concrete. So, there is a need for developing a standard numerical tool which predicts the fracture energy of concrete which is at par with experimental results. The present study is an attempt to evaluate the fracture energy and characteristic length for different grades of concrete using Concrete Damage Plasticity (CDP) model. Indian Standard and EUROCODE are used for the basic input parameters of concrete. Numerical evaluation is done using Finite Element Analysis Software ABAQUS/CAE. Hsu & Hsu and Saenz stress-strain models are adopted for the current study. Mesh sensitivity analysis is also carried to study the influence of type and size of elements on the overall accuracy of the solution. Different input parameters like dilatation angle, eccentricity are varied and their effect on fracture properties is addressed. The results indicated that the fracture properties of concrete for various grades can be accurately predicted without laboratory tests using CDP model.